
Ch. 8 Intro to
Tidy Data

NCEAS Learning Hub
Arctic Data Center

January 2024

Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst

https://www.openscapes.org/
https://www.openscapes.org/blog/2020/10/12/tidy-data/

Learning Objectives

● Understand basics of relational data models, aka tidy data
● Learn how to design and create effective data tables

artwork by @allison_horst

https://twitter.com/allison_horst

Introduction
8.1

book sections here, in
case you want to cross

reference!

Relational data models are what relational databases use to organize tables.

Benefits:

- Powerful search & filtering
- Handle large, complex datasets
- Enforce data integrity
- Decrease errors from redundant updates

An organized
collection of

information (i.e. data)A type of database
that contains data

tables that are related
to one another

The organizational
structure that allows

for relating data tables

However, you don’t need to be using a relational database (e.g mySQL, MariaDB,
Oracle, Microsoft Access) to benefit from using a relational data model.

Simple Guidelines for Data Management (Borer et al. 2009)

Use a scripted program

Nonproprietary file formats

Descriptive names
mooredCTD_site1_2020-2023.txt
mooredCTD_site2_2020-2023.txt
mooredCTD_site3_2020-2023.txt

Plain ASCII textA B C / 1 2 3

8.1.1

Header line

Keep a raw version of the data

Simple Guidelines for Data Management (Borer et al. 2009)

- Design your tables to add rows, not
columns

- Each column should contain only one type of information

- Record a single piece of data only once; separate
information collected at different scales into different
tables -- in other words, create a relational database

8.1.1

Recognizing “untidy” data
8.2

artwork by @allison_horst

https://twitter.com/allison_horst

Recognizing “untidy” data
8.2.1

A not-so-tidy spreadsheet received by NCEAS….

Recognizing “untidy” data - multiple tables
Easy for humans to interpret (sort of?), hard for computer programs (e.g. R)

8.2.2

INSTEAD: create separate tables/files for each entity measured

Recognizing “untidy” data - inconsistent observations
Each row corresponds to more than one observation

8.2.3

INSTEAD: each row should represent a single observed entity

Recognizing “untidy” data - inconsistent variables
Each column contains more than one variable type

8.2.4

INSTEAD: all values in a column should be of the same type (tip: compare units)

Recognizing “untidy” data - marginal sums & stats
Marginal sums & statistics are combinations of observations

8.2.5

INSTEAD: only identifying or measured variables should exist here; use a scripted language to analyze data / calculate summary stats

Denormalized (untidy) data
8.3.1

Data are denormalized when observations about different entities are combined. For
example, each row in the data table below has site characteristics & species
observations:

site characteristics species observations

Importantly, a new species observation would require us to add columns (not a row) --
this data table organization is also known as wide format

Normalizing (tidying) this data table

Observed entities:

- site characteristics

- plant species

Variables associated with those observations:

- temperature

- height

8.3.1

To normalize this data table, we want to organize observations about each type of
entity in it’s own table

Normalized (tidy) data
8.3.2

We now have:

- Separate tables for each type of entity

- Each row represents a single observed entity
- Observations (rows) are all unique

- All values in a column are of the same type
- All columns pertain to the same observed entity
- Each column represents either an identifying

variable or a measured variable (no summary
stats)

Additionally:

normalized / tidy / long format

denormalized / untidy / wide format

Normalized (tidy) data
8.3.2

Our normalized data now meet the guidelines
set by Borer et al. 2009:

- Tables are designed to add rows, not columns

- Each column contains only one type of information
- A single piece of data is recorded only once &

separated information collected at different
scales into different tables

Normalized (tidy) data has lots of benefits!
8.1

More easily filter rows for observations of interest
dplyr::filter(data = plant_data, spcode == “DAPU”)

Describe columns more precisely

denormalized / untidy / wide format

normalized / tidy / long format

Optimize storage

Decrease errors from redundant updates

spcode is the spp. identifier, but what exactly is sp1code, sp2code?

not repeating data (e.g. date) reduces file size

e.g. only need to update site name in table 2

One more look at tidy data

artwork by @allison_horst

https://twitter.com/allison_horst

Using normalized data
8.4

Two tables?!? Don’t we want to analyze all
these different measurements together??

(e.g. how will we use site temperature as a
predictor variable for species composition?)

Keys!

Keys allow us to link observations across tables
8.4

Primary Key: a unique identifier for
each observed entity, one per row

Foreign Key: reference to a primary
key in another table (linkage)

id uniquely
identifies each row in

the plant table

site uniquely
identifies each row in

the site table

site references the primary key in the
site table -- this is our linkage

en
tit

y:
 p

la
nt

s
en

tit
y:

 s
ite

s

primary key

primary key

foreign key

surrogate
key

natural
 key

en
tit

y:
 s

ite
s

en
tit

y:
 p

la
nt

s
compound key

Keys allow us to link observations across tables

id date site spcode height name temp

1 2017-10-10 1 DAPU 4.6 Taku 23.7

2 2017-09-05 2 DAMA 3.5 Lituya 19.9

3 2017-10-10 1 DAMA 4.5 Taku 23.7

4 2017-09-05 2 DAPU 3.9 Lituya 19.9

Joined the tables by site

Merging data (aka “joins”)
8.5

Merging (or joining) two related data tables based on key values is something you’ll
probably do often during the data preparation (pre-analysis & visualization) stage.
We’ll use these two tables to showcase how different types of joins work:

Inner join
8.5

Merge (i.e. keep) the subset of rows that have matches in both the left and right tables

rows 3 (from left table) & 4 (from right table) are dropped because they have no matches

Left join
8.5

Take all rows from left table and merge on data from matching rows in right table

rows 1 & 2 (left table) have matches in the right table and are kept;
row 3 (left table) does not have a match in the right table, so it is kept and assigned an NA value

Right join
8.5

Take all rows from right table and merge on data from matching rows in left table

rows 1 & 2 (right table) have matches in the left table and are kept;
row 4 (right table) does not have a match in the left table, so it is kept and assigned an NA value

Full join
8.5

Includes all rows from both tables and adds missing values (NAs) where necessary

rows 1 & 2 are matched;
row 3 (left table) and row 4 (right table) are kept despite not having matches (assigned the value, NA)

Spoiler: {dplyr} has super helpful functions for joining data
8.5

inner_join(x, y)

left_join(x, y)

right_join(x, y)

full_join(x, y)

