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Lowering the Barriers for Accessing Distributed
Geospatial Big Data to Advance Spatial Data

Science: The PolarHub Solution
Wenwen Li

School of Geographical Sciences and Urban Planning, Arizona State University

Data is the crux of science. The widespread availability of big data today is of particular importance for fostering
new forms of geospatial innovation. This article reports a state-of-the-art solution that addresses a key cyberin-
frastructure research problem—providing ready access to big, distributed geospatial data resources on the Web.
I first formulate this data access problem and introduce its indispensable elements, including identifying the
cyberlocation, space and time coverage, theme, and quality of the data set. I then propose strategies to tackle
each data access issue and make the data more discoverable and usable for geospatial data users and decision
makers. Among these strategies is large-scale Web crawling as a key technique to support automatic collection
of online geospatial data that are highly distributed, intrinsically heterogeneous, and known to be dynamic. To
better understand the content and scientific meanings of the data, methods including space–time filtering,
ontology-based thematic classification, and service quality evaluation are incorporated. To serve a broad scien-
tific user community, these techniques are integrated into an operational data crawling system, PolarHub,
which is also an important cyberinfrastructure building block to support effective data discovery. A series of
experiments was conducted to demonstrate the outstanding performance of the PolarHub system. This work
seems to contribute significantly in building the theoretical and methodological foundation for data-driven
geography and the emerging spatial data science. Key Words: cyberinfrastructure, geospatial big data, semantic
classification, spatial data science, Web crawling.

数据是科学的关键。在今日, 大数据的广泛可及性, 对于促进崭新的地理空间创新形式而言特别重要。

本文报导一个应对关键信息基础建设研究问题的最新解决方法——在互联网上提供大型且分散的地理

空间数据资源的管道。我首先阐述此一数据取得管道的问题, 并引介其不可或缺的元素, 包含指认信息

位置、时空聚合、主题, 以及数据集的质量。我接着提出应对各个数据管道问题、并且让地理空间数据

使用者与决策者更容易发现与使用数据的策略。这些策略以大规模网络抓取作为支持自动搜集高度分

散、本质上异质且动态的网上地理空间数据之关键技术。为了更佳理解数据的内容与科学意义, 纳入包

含时空筛选、以本体为基础的主题分类, 以及服务品质评估等方法。为了服务广泛的科技使用者社群,
这些技术被整合进操作式的数据抓取系统 “极地枢纽” (PolarHub), 该系统同时是支持有效的数据挖掘的

信息基础建设的重要基石。本研究进行一系列的实验,证实 PolarHub系统的杰出表现。该工作似乎对数

据驱动的地理和浮现中的空间数据科学建立理论与方法论基础, 做出显着的贡献。 关键词： 信息基础

建设,地理空间大数据,语义分类,空间数据科学,网络抓取。

Los datos son el elemento esencial de la ciencia. La disponibilidad generalizada de big data en la actualidad tiene
particular importancia para el fomento de nuevas formas de innovaci�on geoespacial. En este art�ıculo se reporta
una soluci�on de vanguardia que aboca un problema de investigaci�on clave de ciberinfraestructura––proveyendo
acceso expedito a vastos recursos de datos geoespaciales distribuidos en la Web. Primero que todo formulo este
problema de acceso a los datos y presento sus elementos indispensables, incluso identificando la
ciberlocalizaci�on, la cobertura de espacio y tiempo, el tema y la calidad del conjunto de datos. Luego, propongo
las estrategias para encarar el asunto individualizado del acceso a lo datos y de hacerlos m�as f�aciles de recuperar,
y m�as utilizables para los usuarios de informaci�on geoespacial y para los tomadores de decisiones. Entre estas
estrategias se encuentra el rastreo de la Web a gran escala como t�ecnica clave para apoyar la recolecci�on
autom�atica de datos geoespaciales en red que se hallan muy distribuidos, son intr�ınsecamente heterog�eneos y
que se sabe son din�amicos. Para entender mejor el contenido y significados cient�ıficos de los datos, se incorpo-
raron m�etodos que incluyen el filtrado espacio–temporal, la clasificaci�on tem�atica basada en la ontolog�ıa y el
servicio de evaluaci�on de la calidad. Para servir a una amplia comunidad de usuarios cient�ıficos, estas t�ecnicas
se integraron en un sistema operacional de rastreo de datos, el PolarHub, que tambi�en es un paquete importante
de construcci�on de ciberinfraestructura para ayudar al efectivo hallazgo de datos. Se llev�o a cabo una serie de
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experimentos para demostrar el sobresaliente desempe~no del sistema PolarHub. Este trabajo puede contribuir
significativamente a edificar los fundamentos te�oricos y metodol�ogicos de la geograf�ıa orientada por datos y a la
emergente ciencia de los datos espaciales. Palabras clave: ciberinfraestructura, big data geoespaciales, clasificaci�on
sem�antica, ciencia de los datos espaciales, rastreo de la Web.

D
ata is the crux of science (Tenopir et al. 2011).
The widespread availability of scientific data
today has brought researchers into a world in

which research is shifting from application driven to
data driven (Bell, Hey, and Szalay 2009). Foster
(2005) stressed that data are valuable only if others
can discover, access, and make sense of it. Data-driven
discovery was later proposed by Hey and his colleagues
as the fourth scientific paradigm to complement exist-
ing paradigms of theory, experimentation, and compu-
tation (Hey, Tansley, and Tolle 2009). In the realm of
geography, Miller and Goodchild (2015) described the
emergence of an evolutionary field, data-driven geog-
raphy, for the first time in response to rapidly explod-
ing geospatial data. In human mobility research, for
example, knowledge discovery is increasingly relying
on mining from massive amounts of data collected
through geosensor networks, location-based devices
(i.e., smartphones), and point-of-sale (PoS) databases
(Miller 2010; Kwan 2016).

In health geography, more studies are being con-
ducted using georeferenced social media data to under-
stand public health issues, such as the prevalence of
healthy and unhealthy food on a national scale
(Widener and Li 2014). This scale cannot be readily
accomplished using traditional data collection meth-
ods (i.e., questionnaires). In polar science, for
instance, researchers are now capable of understanding
historical climate change and the impact of global
warming on Arctic ecosystems by taking advantage of
big data acquired by Earth observation satellites and
numerical simulation models (Yin et al. 2011).

Despite the opportunities presented by big data, the
deluge of information poses significant challenges to
geospatial researchers. One challenge is to identify the
best available data distributed on the Web to perform
precise science. This data access problem has attracted
much attention from various geography-related disci-
plines (Ramamurthy 2006; Gold 2007; Li et al. 2011;
Michener et al. 2011; Allard 2012; Ames et al. 2012).
Several U.S. government agencies have acknowledged
big data and data access as crucial to future develop-
ments as well (Whitehouse 2012). In 2000, the
National Science Foundation (NSF) emphasized the
importance of “improv[ing] and extend[ing] facilities to
collect and analyze data on local, regional, and global

spatial scales and appropriate temporal scales” to
advance the understanding and prediction of the Earth’s
environment and habitability (Avery 2000). In the
NSF’s 2003 blue ribbon report on cyberinfrastructure
(CI), data access is identified as one of the four major
research themes for revolutionizing science and engi-
neering (Atkins et al. 2003).

Among the emerging CI platforms is PolarHub, a
large-scale geospatial data crawler and content ana-
lyzer that lowers the barriers for data access across mul-
tiple geospatial disciplines developed by the authors.
PolarHub integrates large-scale Web crawling, seman-
tic and location analysis, and quality evaluation to
tackle the data access challenge in a comprehensive
manner. It has the ability to automatically collect dis-
tributed data sets, which increases their value for reuse
and advances science. It serves as an excellent testbed
for scientists to find data to accelerate knowledge dis-
covery process, for monitoring the evolution of ser-
vice-based data sharing and interoperability, for
experimenting with new cyberinfrastructure algo-
rithms to advance spatial data science, and for opening
up ample opportunities for applications in multiple
disciplines, within and beyond geography.

The rest of the article is organized as follows: The
first section formally defines the data access problem
and its five indispensable facets. Section 3 discusses
the design principles of PolarHub. I then introduce
key techniques to identify the theme, spatial and
temporal coverage, and quality of crawled data sets.
After that, I introduce the graphical user interface
(GUI), which integrates proposed techniques, and
then conclude the work and propose future research
directions.

Distributed Data Access: A Problem
Statement

As stated previously, data are the crux of scientific
research. Today’s big data deluge is affecting the way we
do science in nearly all aspects (Hey, Tansley, and Tolle
2009). This is especially true in GIScience, where huge
amounts of spatiotemporal data are becoming central in
analyzing physical and societal changes. Therefore,
making data available to scientists along the knowledge
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creation pipeline is always the essential first step. I term
this problem a data access problem, defining it in quin-
tuple form to highlight the five key facets for retrieving
needed data to support scientific analysis:

< cyber¡ location; theme; spatial extent;

temporal extent; quality> (1)

The first facet is about the Web location where data sets
are shared and hosted, as scientists are always most con-
cerned about “where to find data.” Today’s paradigm for
data discovery is very different from the traditional
approach of copying data. The development of the
Internet has made geospatial data easily shared and
widely distributed. The exponential growth in the
amount of information that the Web carries, however,
presents significant challenges in locating relevant spa-
tial data as it accounts for only a very small percentage
of the entire volume of data on the Web. Therefore,
identifying the footprint and entry point of Web-based
spatial and spatiotemporal data becomes one of the
most important dimensions to improving data
accessibility.

The second facet is to identify the theme of a data set
such that it can be properly used to support an analysis.
Geospatial data sources have become much more
diverse due to the development of Earth observation
programs and the advancement of simulation models.
As a result, semantically distinguishing the content of a
data set has become a challenge (Halevy 2005).

The third and fourth facets are about the spatial and
temporal coverage of the data sets. Geophysical and
social phenomena differ from locality to locality and
might present strong space–time variability due to
local terrain, human activity, and land use patterns
(New, Hulme, and Jones 2000). Moreover, geospatial
research most often covers study areas, even related
ones, using different parameters. Therefore, the data
need to not only be relevant but cover specific geo-
graphical area(s) and period(s) of time to enable scien-
tific analysis.

The final facet is about data quality or the degree
of uncertainty or reliability that is acceptable to
solve a research problem at a certain scale. Bad or
unreliable data will result in errors, making the
information useless for interpreting the dynamics of
various physical or social phenomena. Hence, an
effective data discovery tool must not only find the
data set but it must also be able to evaluate the
data quality to deliver the best, most reliable data
to the scientists.

Each of the five facets is therefore indispensable in
ensuring a successful spatial data access and retrieval
process. No matter how smart a cybertool is, there
might still be a lack of key data to analyze if the cyber-
location (or accessibility) challenge is not addressed.
Similarly, a data set, even though available, might not
effectively support research if spatial, thematic, and
quality issues (semantic challenges in short) are not
taken into consideration.

Literature

In this section, I review efforts in addressing both
the accessibility challenge and semantic challenge in
the literature.

Data Access through the Spatial Data Infrastructure

To increase public access of distributed geospatial
data services, various national and international spa-
tial data infrastructure (SDI) research has been
initiated. Exemplar solutions include the U.S. Gov-
ernment’s open data portal, data.gov (Lakhani, Aus-
tin, and Yi 2010), the European Union’s INSPIRE
project (EU INSPIRE 2007), and the Global Earth
Observation System of Systems (GEOSS; Christian
2005). These SDI solutions advance data access and
discovery using a Web catalog, which data providers
register to be included in and publish their data prod-
ucts into. Data users are then able to search the catalog
for data sets that match their space and time interests.
These solutions suffer from significant limitations,
however, including data collection that relies heavily
on voluntary data submission (Li et al. 2011) and out-
dated data. For example, once metadata are registered
in the catalog, there is often not an effective mecha-
nism to inspect or update them as the data evolves. As
a result, dead Web links are common due to coverage,
availability, or Web location changes (Li, Yang, and
Yang 2010).

Overcoming this issue has fostered the development
of cross-catalog harvesting (Li, Yang, and Raskin 2009),
which creates a data-sharing channel among SDIs.
Although this has helped identify some data, data dis-
covery is still restricted within the scope of a limited
number of known catalogs. Other solutions such as cata-
log search engines that search for online catalogs and
then make data discovery through catalog harvesting
have been developed, but they commonly fail to find
individual services not part of any catalog. In fact, as
the Web expands, online geospatial data resources are
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expected to become more distributed rather than cen-
tralized, making this a significant issue. Thus, a catalog
solution without the ability to realize automatic data
discovery will be nearly impossible to sustain.

Active Data Discovery through Web Crawling

Another cluster of efforts for active data discovery
centers on collecting geospatial data from social
media, known as volunteered geographic information
(VGI; Goodchild 2007). These crawlers (Gao et al.
2014; Widener and Li 2014; Wang et al. 2015) use the
customized application programming interface (API)
provided by a specific social media Web site instead of
looking for data from the unstructured Web. The chal-
lenges in terms of (1) handling the diversity and com-
plexity of unstructured data in the deep Web and (2)
effective extraction of spatially annotated data are
therefore much lower than developing a new tool set
to provide widespread access to data distributed on the
Web.

Lately, geospatial researchers have attempted to
employ Web crawling techniques for active discovery
of geospatial data and services (Li, Yang, and Yang
2010). This has presented vast challenges such as big
data storage and management, limitations in comput-
ing power, and sophistication in crawler designs. As a
result, most existing solutions adopt a strategy of
metacrawling (Lopez-Pellicer et al. 2011), a way to
filter data of interest from search results in commer-
cial search engines, such as Google or Bing (Huang
and Chang 2016). Although the algorithm design
is simplified, coverage of the Web is questionable,
especially for the geospatial Web, due to its heavy
dependency on another search engine. Moreover, few
of these tools provide a thorough analysis of the
collected data, impeding their comprehension and
usability.

Semantic Enhancement for Data Discovery and
Understanding

Besides increasing access, a comprehensive data
retrieval engine should promote data comprehension
to enhance reuse. A key aspect is for semantic under-
standing of metadata to facilitate topical classification
and search (Sicilia 2006). It is widely acknowledged
that different information communities frequently use
the same keywords to refer to different objects or phe-
nomena or use different keywords to refer to the same
phenomenon (Worboys and Dean 1991; Bishr 1998;

Fonseca et al. 2002; Li, Yang, and Raskin 2008; Good-
child and Janelle 2010). Even within the same com-
munity, the use of keywords for describing the same
entity might change over time (Ventrone 1991).
These discrepancies result in a lack of understanding
of the data content or semantic heterogeneity (Lutz
et al. 2009), which significantly impedes the usability
of data. This challenge is common for both topical
keywords and those involving place names (Li, Good-
child, and Raskin 2014).

Addressing this issue always involves the use of
ontology, a machine-understandable knowledge base
for semantic annotation and concept mapping
(Bukhres et al. 2000; Raskin and Pan 2005; Li, Yang,
and Raskin 2008; Janowicz and Hilzler 2013). How-
ever, the effectiveness of this approach depends
heavily on the completeness of the ontology in use
(Li, Goodchild, and Raskin 2014). The population of
ontologies is always time consuming and sometimes
debatable across domains and knowledge areas
(Agarwal 2005). A more intelligent and automatic
solution is therefore desired.

In this article, I propose and develop cutting-edge
solutions to tackle these data access challenges in a
comprehensive manner and integrate them into an
operational cyberinfrastructure platform for Web-wide
access.

PolarHub Design Principles

The PolarHub cyberinfrastructure platform
addresses questions in the form of “Find me some
online data set (U to denote its Web location) related
to theme A within a study area of X from Time Y1 to
Y2 at a quality of or better than Q.” The variables—U,
A, X, Y1, Y2, and Q—match the five facets for access-
ing needed data sets identified in the quintuple form.
There are two ways of approaching this question. One
is to develop a theme-specific crawler. The other is to
build a crawler that tries to find all possible geospatial
services and then classifies them into different themes
and different coverage regions as needed. The advan-
tage of a theme-specific crawler is that it only collects
the data that address the exact needs of a specific
application or domain, such as polar climate science.
Because irrelevant data sets are filtered out on the fly,
however, when geospatial data related to another
theme are needed, the crawling process must be
repeated with new requirements, resulting in a waste
of computing resources and additional time.
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The design of PolarHub uses the second principle to
collect as many geospatial data services as possible
through large-scale Web crawling regardless of the
data’s theme or geographical extent. Once found, the
data are further analyzed and categorized (Li, Wang,
and Bhatia 2016). In this way, the complex data access
problem is decomposed and tackled at different phases.
Figure 1 demonstrates PolarHub’s data retrieval and
search workflow.

The first workflow phase identifies all possible geo-
spatial data that exist on the Web regardless of their
theme, spatial or temporal extent, and quality through
a continuous Web crawling process. The goal is to col-
lect as many data sets as possible. PolarHub discrimi-
nates geospatial data from other domain data based on
data types. For instance, to foster the widespread shar-
ing and interoperability of geospatial resources, geo-
spatial data are often encapsulated into standard data
services compliant with Open Geospatial Consortium
(OGC) standards.

A geospatial data set can be published into an OGC
Web Map Service (WMS; de La Beaujardiere 2006)
that renders the actual data into maps. Vector data
can be serialized and shared through an OGC Web
Feature Service (WFS; Vretanos 2005). A raster data

piece, on the other hand, can be published according
to the OGC Web Coverage Service (WCS; Whiteside
and Evans 2008) to deliver the coverage data in a stan-
dard format, such as GeoTiff (Ritter and Ruth 2000)
or ArcGrid (ESRI 2011). There are also other service
standards for sharing sensor observation data, such as
the OGC Sensor Observation Service (SOS; Na and
Priest 2007) or sharing tiled geospatial data such as
the OGC Web Map Tile Service (WMTS; Mas�o,
Pomakis, and Juli�a 2010). These data sets, available as
services, have specific patterns that can guide the data
search and extraction process. The way PolarHub
works to find these data is discussed in detail later in
this article.

In parallel with the search process, a postprocessing
program is initialized to analyze collected data sets and
pull out a subset that satisfies the needs of a domain
application. Three filters, a space–time filter, semantic
filter, and quality evaluator, are applied. The space–
time filter returns data that depict information about
the study area, such as the Arctic, at the predefined
time period. The semantic filter classifies the data set
according to topics or keywords to obtain a subset that
contains relevant themes; that is, the desired geophys-
ical, atmospheric, or socioeconomic phenomena. I

Figure 1. PolarHub’s multiphase data retrieval and search workflow.
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name this module a semantic filter to emphasize the
importance of data semantics in ensuring an accurate
thematic classification of the data set. The third mod-
ule is the quality evaluator. This module diagnoses the
availability of data as well as its service performance
by measuring the response time, server stability, and
data download success rate, among other factors. The
quality evaluator is essential in delivering the most sta-
ble data to end users.

These three modules can run sequentially or con-
currently because there is no interdependency among
these modules. The successful execution of these mod-
ules, though, relies on the analysis of the metadata
from the data services. A GetCapabilities request, sup-
ported by all OGC data services according to the defi-
nition in OGC Common (Whiteside 2007), enhances
the compatibility and communication among distrib-
uted data services. In this way, new data sets and data
service metadata are acquired and saved in PolarHub’s
local data repository between the data search phase
and the postprocessing phase to support various filter-
ing operations.

Key Techniques to Enable Effective
Access to Distributed Geospatial Data

Where Are the Geospatial Data Located?

PolarHub uses a hybrid search approach that
combines Web crawling and a metasearch strategy
to achieve high-performance crawling. The two
strategies (crawling and metasearch) do not appear
to be harmonizable. In this specific search problem,
however, the coordination of the two strategies
realizes high crawling efficiency. The metasearch
takes advantage of the huge index of general search
engines to narrow the search scope to geospatial-
related Web content of interest. The Web crawling
then spreads the search out from these Web seeds
to discover more data and service resources. This
strategy avoids aimless crawling because the meta-
search eliminates many irrelevant Web pages.
Figure 2 demonstrates PolarHub’s software architec-
ture design. The core search engine is where the
hybrid search strategy is implemented. Initially,

Figure 2. PolarHub architecture design.
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keywords with either a thematic topic (i.e., land
use), an agency name (i.e., NASA), a place name
(i.e., Greenland), or any combination are redirected
to general search engines, such as Google or Bing,
to start the metasearch. Note that the data or ser-
vice type of interest, such as Web Map Service, is
jointly used with these keywords for further Web
content filtering. Once initial search results are
retrieved from these search engines, overlapping
Web pages are removed and the rest are used as
the crawling seeds to start general crawling. Gen-
eral crawling iteratively retrieves the source Web
page of a seed Web page, extracts all of the hyper-
links from it, and then visits the linked Web pages
until a given crawling depth, measured by the num-
ber of jumps from seed Web page to current Web
page, is reached. Concurrently executed with the
crawling process, a metadata parsing module is
enabled to facilitate the determination of whether
a URL belongs to an endpoint data set or a data
service by matching service patterns encoded in
regular expressions (Li, Wang, and Bhatia 2016).

Besides the combined crawling strategy, another
unique feature of PolarHub is its ability to search for
both geospatial data services and the online databases
that host these services. This feature is of great impor-
tance because it integrates the advantages of (1) a data
crawler, which focuses on searching for scattered
online data sets that are not registered in any catalog
(Li, Yang, and Yang 2010); (2) the centralized catalog,
which conducts cross-harvesting of data sets residing
in other known catalogs (Li, Yang, and Raskin 2009);
and (3) a catalog crawler, such as Spatineo Director-
ate, which searches for distributed catalogs in an active
manner and then retrieves geospatial data from discov-
ered catalogs.

Using this strategy, PolarHub can mine and dis-
cover distributed geospatial data sets from both the
surface Web for scattered data sets and the deep Web
(Bergman 2001) for data hidden within a database
using a Catalog Service for the Web (CSW) interface.
This significantly improves the discoverability of dis-
tributed geospatial data and services.

What Is the Theme of Each Data Set?

Annotating the data set by its theme or subject
is a typical classification or categorization process
(Biettron, Pallu, and Tricot 2006). In the context
of this research, thematic classification is performed
on the metadata (textual information) describing

the content of the data set. This is different from
thematic classification in remote sensing, which
classifies satellite imagery to obtain the land cover
types (Rosenfield and Fitzpatrick-Lins 1986; Vatsa-
vai and Bhaduri 2011).

Metadata thematic classification is of great
importance to geospatial applications. First, almost
without exception, geospatial applications must sup-
port mapping and the generation of maps showing
the environmental or socioeconomic conditions of
a geographical area. These maps are often called
thematic maps (Scholl and Voisard 1990), as they
overlay geospatial data with different themes to
support geospatial knowledge acquisition (MacEach-
ren 1991). Organizing PolarHub-identified data sets
thematically greatly facilitates the creation of the-
matic maps.

Second, annotation according to the data set’s
theme is an effective way to index data and avoid
information overload during the retrieval and search
process, especially within a large collection of data
(Clark and Watt 2007). Existing SDI systems, such
GEOSS (Bai et al. 2012), the Global Change Master
Directory portal (GCMD; Miled et al. 2011), and
Data.gov (Lakhani, Austin, and Yi 2010), rely on
manual selection of data themes by data providers.
When dealing with massive data sets, this method is
not efficient. In PolarHub, a methodology that com-
bines ontology and advanced metadata processing is
used to realize automated thematic classification of
crawled data sets. Figure 3 illustrates the proposed the-
matic classification framework. Figures 4 and 5 provide
examples of input data and knowledge for thematic
classification, respectively.

First, the structured metadata (green box) is parsed.
Most metadata records are encoded in popular formats
such as XML and JavaScript Object Notation (JSON).
Figure 4 demonstrates an XML fragment describing
one of the data layers contained in a U.S. Geological
Survey (USGS) data set used as input data. In addition
to these commonly used metadata standards, the OGC
community is investigating the use of Semantic Web
standards, such as Resource Description Framework
(RDF) or Web Ontology Language (OWL), to add
semantic tags for machine understanding.

These metadata are then sent to the text-processing
component, in which the description information
about the data set included in the “Abstract,” “Title,”
or “Keyword” tags are extracted. This textual informa-
tion is further processed to extract keywords using
N-gram analysis (Bespalov et al. 2011). The open
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source n-gram analyzer NgramTool (Naqao and Mori
1994; Lu, Zhang, and Hu 2004) is used to parse meta-
data in PolarHub.

The n-gram analysis is adopted to detect and extract
cooccurring words within a predefined window. In the
context of this work, the scanning window is limited
to be within each sentence. The proposed N-gram

analysis breaks a sentence or phrase into sets of words.
For example, N D 2 means each pair of consecutive
words in the sentence (first/second word, second/third
word, third/fourth word, etc.) were extracted. These
extracted phrases are known as bigrams. Trigrams or
multigrams can also be generated by extracting three
consecutive words (N D 3) or any number of grams

Figure 4. Example of input data: Metadata fragment in XML.

Figure 3. Thematic classification workflow. Note: XML D Extensible Markup Language; RDF D Resource Description Framework; JSON
JavaScript Object Notation; OWL DWeb Ontology Language; GCMD D Global Change Master Directory.
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(four grams, five grams, etc.), as determined by length
of the original phrase. This preserves the complete
semantic information by considering a phrase rather
than just a single word in the semantic analysis pro-
cess, ensuring more complete thematic classification.

After text processing, all scientific keywords and
phrases are saved in a document vector for cross-
comparison with knowledge defined in the ontol-
ogy. In this work, the GCMD science keyword tax-
onomy is adopted. There are more than 3,000
keywords in total within the taxonomy, making it
one of the most comprehensive knowledge bases for
Earth and space science topics. As Figure 5 demon-
strates, the Earth science domain is divided into
fifteen subdisciplines (e.g., land surface, atmosphere,
etc.). The keywords are then populated to domain
ontology, encoded using RDF format, and saved in
a triple store.

After this preprocessing, the set of keywords
(mi 2 M) extracted from the metadata and the set of
theme keywords (tj 2 Tj) defined in the ontology are
sent to the semantic analysis module for keyword
matching. Rather than matching only the appearance
of the keywords, a semantic matching process is intro-

duced. That is, the relevancy of metadata keyword mi

and theme keyword tj is measured by how similar
each pair of words is semantically. Normalized Goo-
gle Distance (NGD) defines this similarity, namely,

NGD.mi; tj/D max log f.mi/; log f.tj/
� �¡ log f mi; tj

� �
log K¡min log f mið Þ; log f.tj/

� � ; (2)

where K is the total number of Web pages searched
by Google, and f mið Þ and f tj

� �
are the number of hits

when the metadata keyword and the theme keyword
are used for searching, respectively. f mi; tj

� �
is the

number of Web pages in which both mi and tj appear.
To ensure high accuracy in the thematic
classification process, a high NGD threshold (0.8)
was set for determining whether a metadata belongs
to a certain theme. If more than one category receives
a score higher than the given threshold, the data layer
is assigned to the category that gets the highest score.
During the semantic analysis and matching process,
terminologies from another Earth science ontology,
the Semantic Web for Earth and Environmental
Terminology (SWEET; Raskin and Pan 2005), are

Figure 5. Example of knowledge for thematic classification: A snapshot of Global Change Master Directory science keyword structure.
(Color figure available online.)
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integrated to enrich the existing knowledge base.
Classification results are reported later in this article.

How Are Data That Cover a Specific Period or
Geographical Area Distilled?

The next challenge for PolarHub is how to distill
data that cover a specific period or geographical area.
In other words, a time stamp is needed as well as a spa-
tial filter to help PolarHub identify data sets for
searches such as “Find me all data services covering
East Europe,” or “Find me all polar data services”
retrieved in “year 2000.”

Extraction of OWS metadata time stamps requires
the development of a time parser for XML capability
files. Two types of services, the Web Map Service
Time (WMS-T) and SOS usually contain time com-
ponents in their metadata. For the OGC WMS-T, the
mandatory field “wms_timeextent” defines the valid
time extent for a data layer. For SOS, the time parse
identifies the “Time Period” field that provides tempo-
ral coverage of data. Within each individual record,
the timestamp at which the data are collected is also
provided. These two parameters are the key to extract-
ing temporal properties of a data set and time filtering.

For PolarHub, a regular expression-based pattern
analyzer detects different time patterns. In the time fil-
ter module, separate time parsers, one for temporal

coverage and one for data collection, are developed
and integrated as plug-ins. They are dynamically
invoked when parsing and filtering of a specific data
service is requested.

For distilling geographic area data, a commonly
used approach is the comparison of spatial information
within the region of interest in a query. This method
always involves geocoding, a process that converts a
place name into georeferenced spatial data, normally
represented by its latitude and longitude (Goodchild
2013). In gazetteers (a geographical dictionary or
directory used in conjunction with a map or atlas) like
DBpedia (Auer et al. 2007) and GeoNames (Vatant
and Wick 2006), the provision of georeferenced place
information is through points, which omits boundary
information. This information is important, especially
when the place is large in extent, such as the state of
Maine. In spatial data infrastructure solutions, the spa-
tial filter is always conducted by detection of overlap
in the spatial extent that a data set covers and the spa-
tial extent of region of interest (ROI) provided by the
user (Maguire and Longley 2005).

Based on several preliminary experiments, however,
many data services, particularly those whose sources
are remote sensing platforms that provide data cover-
ing the whole world, spatial coverage is defined as
“¡180, ¡90; 180, 90” in a “latlon” coordinate system.
Even though these data are considered relevant for
many spatial queries, they are often not detailed

Figure 6. Workflow of the hierarchical spatial filter.
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enough to provide information about a specific region
of interest. In addition, the coordinate information for
some data sets might be missing in its metadata,
excluding such data from a search. To address this,
I introduce a hierarchical spatial filter that introduces
the combined use of spatial information and semantic
information in the analysis (Figure 6).

For a data set that claims to cover a world extent but
in fact only covers a subregion or a data set with miss-
ing latlon information, a gazetteer is integrated to nar-
row down the actual geographical extent of coverage
and improve the query effectiveness. This is accom-
plished by first extracting the place name existing in
the title of the metadata. Next, the Flicker map API is
used to obtain the bounding box information of the
place. Note that this process might introduce an issue
of place-name ambiguity, a common case, as different
regions often share the same place name. Ambiguity
can also occur when there is more than one place
name appearing in the title; for example, “New Zealand
percentage change in regional emigration to Australia.”

To eliminate ambiguity, two scans were performed.
The first scan is on the title field, which my prelimi-
nary study showed to be most informative when refer-
ring to a data set’s coverage area. The second scan is
for the appearance of the same place name in other
data sets provided by the same Web service or Web
host, as most typically provide regional data, especially
when the same place name appears in the metadata of
multiple data sets. Next, the accurate latlon informa-
tion of the place name defined in those closely related
data sets was used to interpret the actual spatial extent
of the data set being examined.

Once the spatial extent (bounding box with solid
line in Figure 6) of the input data set and the ROI in a
filtering request (bounding box with dashed line in Fig-
ure 6) are identified, the spatial extent filter is applied
to determine the relatedness of a spatial data to a filter-
ing request. This presents three scenarios that determine
whether the data set covers the requested area.

The first scenario is when the coverage of a data set
is completely inside the requested spatial extent, as
shown in the top case in the “spatial extent filter”
component (far right box) of Figure 6. This is deter-
mined by all points of the data record (solid rectangle)
being within that of the requested spatial extent
(dashed rectangle). One can easily see that this data
set will provide data covering the requested area of
interest. The second scenario is when the two spatial
extents have no overlap at all. This data record can be
filtered out, as it will not provide data covering the

requested spatial extent. The third scenario is when
spatial extents overlap but not all data points are
within the requested spatial extent. When the two
spatial extents have overlap, the following criterion is
adopted to determine whether a data record satisfies a
spatial filter request:

min
A.g/\A.d/

A.g/
;
A.g/\A.d/

A.d/

� �
� u1; (3)

where g, d represents the spatial extent of a data record
and an area of interest in the filtering request and A
(g) and A(d) denote the area they cover. The thresh-
old u1 is set at 25 percent. That means that the over-
lapping coverage must be larger than 25 percent of the
total area covered by a data record and the total area
in the spatial filtering request to make sure that the
data provided are detailed enough to provide sufficient
information.

How Good Is the Quality of the Data?

In addition to space, time, and theme, quality of
data services (QoDS) plays a key role in data- and ser-
vice-sharing infrastructure to help connect the
research community with data of interest (Foster
2005; Mani and Nagarajan 2005). QoDS can be fur-
ther categorized as quality of metadata (QoM) and
quality of service (QoS) for data provided over the
Internet. QoM focuses on evaluating the quality of
data and service metadata used to identify the content
of the data service. The main criteria for evaluating
QoM is its completeness in providing information
such as space, time, and theme (Fox and Hendler
2014). Because metadata are generated during the ser-
vice curation process, as soon as the service becomes
available, QoM is predetermined. It is very much data
provider centric rather than user centric. In contrast,
QoS provides SDI and geospatial cyberinfrastructure
end users a good indication of the reliability and per-
formance of a remote service. Thus, it is very impor-
tant in the data integration and analysis process.
Because this work focuses on providing a user-centric
system, I mainly discuss the development of the QoS
rather than the QoM in this article.

QoS is very much a subjective process. Different
works in the literature propose various quality indica-
tors that evaluate the availability, accessibility, integ-
rity, reliability, security, and other quality-related
factors (Mani and Nagarajan 2005). Li et al. (2011)
developed a service quality checker to provide
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performance information by calculating the response
time of GetCapabilities request from OGC OWS. They
found that response time is the main factor used for
the performance measurement. Xia et al. (2015)
enhanced the model and developed a complex quality
evaluation framework that considers the location of
the data server and location of the users at different
time periods, such as different days of the week. Inter-
esting results were obtained. For instance, the response
time is faster during weekends than weekdays because
of the low volume of researchers using the data serv-
ices. This information requires the simulation of large
numbers of users and statistics over a long time period
(a year) to obtain quality information, however. For a
newer service, this model cannot be applied as a qual-
ity score cannot be provided on the fly.

In addition, the Federal Geography Data Commit-
tee (FGDC) offers an online service quality evaluator
that provides measurement on more than twelve types
of spatial data services. Integrating the FGDC quality
evaluator with PolarHub enables the discovered serv-
ices to be evaluated in real time. Two primary perfor-
mance indicators are adopted—response time and
reliability. Response time has the same usage as that
proposed in earlier works. Reliability is a weighted
combination of the speed of performance (measured
by the response time t) over a test period t (i.e., seven
days) and the rate of successful requests.

Assume mD f si; t; nð Þ returns the number of suc-
cessful requests that is tested on service si over n tests
during the time period of t. Mathematically, the
numerical performance score QoS sið Þ indicating the
reliability of service si can be expressed as

QoS.si/D w1 £ 1¡ t

c

� 	
Cw2 £ f.si; t; n/

n


 �
� 100;

where w1 and w2 are the weights, both with a value
range of [0, 1], and w1 Cw2D 1. c is a constant set as
the longest response time by statistics. The value range
of QoS sið Þ is between 0 and 100, with 0 unavailable
data sets and 100 referring to the service with the
highest quality.

Experiments and Results

Scalability of PolarHub in Discovering Geospatial
Data Services

PolarHub’s finishing condition is controlled by two
parameters—crawling depth and width. The crawling
depth records the number of clicks it takes to visit a
Web page from a seed Web page. The crawling width
determines the number of relevant seed Web pages to
be included in a crawling process. Figure 7 illustrates

Figure 7. Comparison between PolarHub and other spatial data infrastructure/crawler solutions on the ability to collect distributed geospa-
tial resources. (Color figure available online.)
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the number, type, and distribution of PolarHub and
other geospatial data service collection systems. These
data services were found using more than 100 crawling
tasks, which included general keywords containing only
the service type, such as “web map service” or “web fea-
ture service,” as well as thematic keywords extracted
from the GCMD science keyword taxonomy.

To date, PolarHub has found almost 77,000 data
sets distributed in ninety-five countries. Of these,
about 29,000 were found from direct crawling and
16,000 from harvesting of distributed catalogs. This
number is significantly higher than other existing solu-
tions, including 5,140 from data.gov, 15,274 from
INSPIRE, and 33,314 from Spatineo. Overall, it took
PolarHub approximately six months, after initiation of
the first prototype, to accumulate these data services.
The geographical distribution of these services is illus-
trated in Figure 8. As shown, the United States, Can-
ada, many European Union countries, and Australia
are major sources of geospatial data shared as services.
This pattern matches the open government movement
initiated by these countries.

In summary, the outstanding performance of Polar-
Hub for data discovery lies in two design advantages.
First, it combines metasearch with large-scale crawling

strategies. This is significantly different from those
relying on manual data registration. Second, PolarHub
not only searches for distributed catalogs and conducts
further service harvesting from these catalogs but it
also searches for scattered geospatial data on the Web.
This hierarchical crawling harvesting strategy makes it
outperform other solutions, especially those that only
crawl for data within catalogs.

Accuracy of Thematic Classification

As noted earlier, thematic organization of PolarHub-
identified data sets is of great importance to geospatial
applications. Figure 9 further illustrates the thematic
classification results of the discovered Earth science
data set. Data services related to human dimensions has
the highest number, occupying about 35 percent of the
entire data collection. The other physical geography
topics occupy a cumulative 65 percent. This distribu-
tion might reflect the importance of human factors in
geospatial and Earth sciences (Reid et al. 2010).

To illustrate the advantages of using semantic anal-
ysis to support thematic classification, the differences
in three thematic classification approaches were ana-
lyzed. The first approach was using no semantics, only

Figure 8. A geographical distribution of PolarHub-identified geospatial services. (Color figure available online.)
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pure key word matching. This approach only matched
the words listed in the topic with the metadata records
of the OWS. The second approach was GCMD-based
thematic classification. In this case, not only the top-
level themes were matched, but the subcategories of
each theme provided in the GCMD ontology were
also matched. The largest depth in the GCMD ontol-
ogy can reach up to seven. After keyword matching,
the results from each subcategory were aggregated and
the total number of matched records from all these
subcategories were assigned as the final thematic clas-
sification results. The final approach was PolarHub’s
combined use of a taxonomy that integrates scientific
terminology from GCMD and SWEET ontology as
well as the semantic matching process. Results are
demonstrated in Figure 10.

From Figure 10, it can be seen that when only
keyword matching is used, few records can be the-
matically classified. In comparison, the domain
GCMD ontology substantially increases the number
of total matched records (eighteen times higher
than when pure key word matching is used) across

all topic areas. When the semantic analysis and
classification is applied, 60 percent more data
records are successfully classified.

In addition to number of data being successfully
classified, experiments were conducted to evaluate the
classification accuracy using the advanced semantic-
based methods. To make the evaluation manageable,
thirty sample data sets were randomly selected from
each thematic category. Two accuracy results were
generated. One used purely GCMD taxonomy; the
other applied the combined taxonomy and text proc-
essing approach. Figure 11 illustrates the results.

It can be observed that the GCMD approach
achieves a classification accuracy of higher than
80 percent for all categories. On average, the over-
all accuracy is above 90 percent when it is
weighted by the number of data sets belonging to
each category. This shows the benefits of introduc-
ing scientific taxonomy in the classification proce-
dure. I did note some limitations in using the
GCMD taxonomy alone, however. For some catego-
ries, it gets lower classification accuracy due to

Figure 9. Thematic classification results on each Earth Science topic.
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ambiguity. For example, carbon is found in multiple
classifications. It is listed as part of the leaf node
in Agriculture under the hierarchy Agriculturen
SoilsnCarbon as well as a component of the atmo-
sphere. This can result in a misclassification of data

if the carbon is classified under Atmosphere rather
than under Agriculture.

Using the hybrid approach enhances the GCMD
approach by adding text processing. The results
show improved classification accuracy for four of

Figure 11. Classification accuracy comparison using Global Change Master Directory taxonomy alone and the combined taxonomy and
text processing approach. GCMD D Global Change Master Directory.

Figure 10. Comparison in classification result before and after semantic analysis is applied. Note: GCMD D Global Change Master
Directory.
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the thirteen categories. Note that three categories
(Human Dimensions, Land Surface, and Terrestrial
Hydrosphere) received 100 percent classification
accuracy for both approaches. The hybrid approach
achieves better performance because the phrases
extracted from N-gram analysis tend to contain
more scientific meanings and therefore help to
eliminate the ambiguity caused by matching a sin-
gle keyword.

In summary, the set of experiments shows the perfor-
mance boost as well as the high classification accuracy
using the combined ontology and semantic matching
approach to support thematic classification of records.
This technique can better achieve the goal of helping
researchers find the most data they need and at the
same time increase the accessibility of data resources.

Performance of Space–Time Filter

To evaluate the performance of the space–time fil-
ter, thirty data sets providing data for “Greenland,”
“Australia,” “California” (referring to California in the
United States), and “Alaska” (referring to Alaska in
the United States) were randomly selected and a com-
parison on recall and precision was conducted. Recall
measures the portion of relevant data sets that are able
to retrieve by the proposed space–time filter. Precision
assesses the ratio between correctly retrieved data sets
and all data sets returned by the proposed filter. Their

equations are shown here. Table 1 shows the evalua-
tion results.

PrecisonD # of relevant dataset in the result set

# of result set

RecallD # of relevant dataset in the result set

Total # of relevant datasets

As seen, after applying the new approach, both the
recall and precision rates are improved substantially.
The nonperfect recall rates for Alaska and California
are due to lack of place-name mentioning in the meta-
data of the sampled data set, whose bounding box
information is also missing. The precision rates show
that the new approach more accurately defines the
spatial coverage of the data set.

Table 1. Comparison of precision and recall for the sample
spatial queries using place-name as keyword

Precision (%) Recall (%)

Query Original New Original New

Alaska 74.3 100.0 86.7 96.7
California 75.0 93.3 90.0 96.7
Greenland 78.7 100.0 86.7 100.0
Australia 74.3 90.0 86.7 100.0

Figure 12. Portion of services falling in different score interval. Note: WMS D Web Map Service; WFS D Web Feature Service;
WMTS D Web Map Tile Service; CSW D Catalogue Service for the Web; WCS D Web Coverage Service; SOS D Sensor Observation
Service; WPS DWeb Processing Service. (Color figure available online.)
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Service Quality Evaluation Result

The quality of the data services found in PolarHub
was further evaluated. The higher the score is, the bet-
ter quality a service has. Figure 12 illustrates the por-
tion of services falling in each score interval.

Results show that for all live WMS collected, a
majority (»78 percent) received a score higher than
ninety. Over 80 percent of the live WFSs received a
score higher than ninety. About 70 percent of WMTS
and CSW received a score higher than ninety. Only
37 percent of WCS received high scores, however,
and very few of SOS received a score higher than
eighty. Most SOS and WCS received a score between
thirty and forty.

This discrepancy might be due to WM(T)S and
WFS, the two most popular geospatial Web serv-
ices, being widely supported by numerous high-per-
formance Web platforms such as GeoServer, ESRI
ArcGIS server, and so on, for service publishing.
CSW also presents good stability and robustness
across the data providers, as a popular service-ori-
ented catalog solution. In contrast, the platforms
for publishing SOS and WCS are relatively fewer.
Therefore, WMS, WFS, and CSW servers tend to
be more stable than SOS and WCS servers. In
addition, the amount of data being transferred
through SOS and WCS is usually higher than that
transferred by WMS and WFS, because of the real-
time characteristics of sensor observation data as
well as the huge amount of coverage data. The

amount of big data slowed down the server
response time, causing a lower score in quality
evaluation.

PolarHub Graphical User Interface

The PolarHub globe displays the clustered loca-
tions of all the Web services that have been
crawled and saved in the back-end data clearing-
house. By clicking a bubble on the 3D globe, the
detailed service data and metadata can be viewed.
Figure 13 demonstrates the PolarHub GUI crawling
system.

Besides providing the crawling information on
the GUI, a search interface has also been devel-
oped. This allows an authorized user to discover
additional data from the PolarHub data repository
by providing keywords that generate a new crawling
task initiated as a daemon program (i.e., a program
that runs in the background). The end user can
also refine the search results by selecting data from
different organizations, quality, and other criteria.
The results are ranked by keyword matching in the
metadata fields of keywords, title, and abstract. Fur-
thermore, PolarHub integrates methods for identify-
ing the theme (shown as a category on the GUI),
location, and service quality score via a new win-
dow when a specific service is clicked on the virtual
globe.

Figure 13. PolarHub graphical user interface (http://cici.lab.asu.edu/polarhub3). (Color figure available online.)
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Conclusion and Discussion

This article introduces a novel solution to resolve
the accessibility challenge that commonly exists in a
number of science domains, especially the geospatial
sciences in which data about locations are collected
and analyzed. Its unique contributions include (1) a
formal and comprehensive definition of a fundamental
research topic in cyberinfrastructure research—the
data access problem and its five unique and indispens-
able criteria for evaluating data accessibility; (2) Web-
scale data crawling that enables the effective discovery
of distributed geospatial data as well as data shared as
services, thereby bridging the gap between data pro-
viders and data users; (3) the introduction of semantic
analysis and spatial filtering techniques based on
domain ontologies and gazetteers that provide a thor-
ough analysis and a more accurate measure of the
theme and geographical coverage of the spatial data
sets (these techniques enable researchers to easily
identify data sets that satisfy various scientific analysis
needs); (4) the adoption and enhancement of an
FGDC service quality checker that provides on-the-fly
reliability evaluation of the geospatial data services;
and (5) the seamless integration of the proposed meth-
ods into an operational crawling platform, the Polar-
Hub, which continuously inspects the Web footprint
of existing geospatial data.

Although the topic of Web crawling is not new,
expanding this technique to make it suitable for geo-
spatial data discovery is of great importance to
advance the emerging spatial data science. Integrating
it with comprehensive semantic and spatial analysis in
an operational system environment provides a scien-
tific analysis tool that allows researchers to better
understand the changing distribution patterns of the
ever-increasing geospatial data on the Web. In com-
parison to other spatial data infrastructure solutions,
the PolarHub tool enables much more Web coverage
of geospatial data. Furthermore, its data storage is con-
tinuing to increase with the data fully analyzed to
identify staleness and update data content. To this
end, PolarHub serves as an excellent testbed for vari-
ous science applications as well as assessing geospatial
interoperability and trend analysis of its adoption in
the open GIScience community.

In the future, improvements will be further made to
the techniques and methods. Several areas are already
under investigation. On the computation side, the
back-end computing paradigm will be extended from a
multithreading model on a single compute node to a

parallel model that uses the national cutting-edge,
high-performance computing facility Resource Open
Geo-Spatial Education and Research (ROGER) to
achieve high efficiency in data crawling. Meanwhile, a
series of experiments were being conducted to evaluate
the performance in terms of system latency. The main
source of latency comes from the initialization time
that a server takes to allocate computing resources for
a crawling task and the waiting time interval (10 sec-
onds) to ping Web pages from the same remote server
due to politeness policy settings. The statistics on
thirty-four experiments (thirty-four different crawling
tasks using a sixteen-thread compute model) show
that on average the system latency (from starting a
task to the first Web service to be found) is only
19.87 seconds. This result reflects good performance
in terms of quickness and low latency in identifying
geospatial data services.

In addition, the thematic classification framework is
being enhanced to further improve its classification
accuracy. From the experimental results in Figures 10
and 11, it can be seen that although the classification
accuracy is relatively high and the hybrid approach
works better than the ontology approach alone, there
is room for improvement. Efforts are being made to
develop a new automated approach to remove the
ambiguity in the scientific taxonomy and the effi-
ciency in text processing. Strategies are also being
investigated to improve the search functionality and
provide intelligent search capabilities of data within
PolarHub on a finer granularity. The goal is to allow
searching individual observation sites, such as an SOS,
rather than searching an entire service. PolarHub’s
search scope will be extended to cover a broader range
of geospatial data types, such as Shapefiles, CSV, and
GeoJSON.
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