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A B S T R A C T

This paper introduces a streamline visualization technique that empowers PolarGlobe, an interactive, virtual
globe-based, multi-dimensional scientific visualization tool to facilitate the observation and visual inspection of
changes in the climate in real time. Specifically, this technique achieves effective visualization of vector-based
earth science data through an automated data processing pipeline which integrates novel strategies including
random seeding, finer-granularity parallelization and real-time rendering. The random seeding strategy allows
for a vivid visual effect and an interactive framerate regardless of the spatial resolution in the raw dataset. The
visualization algorithm is designed to be naturally parallelizable by partitioning the rendering tasks of unsteady
vector field into multiple subtasks such that high-performance rendering can be realized. The platform is capable
of taking either irregular or regular gridded data as input, and through the proposed data (re)projection pipeline,
an automatic transformation of spatially enabled scientific data from the original data projection to the 3D
globe-based virtual space is achieved. A series of experiments was conducted to identify the best configuration of
rendering parameters to achieve the optimal rendering performance and visual effect. The results demonstrated
the scalability and capability of the proposed PolarGlobe system to visualize big and unsteady vector flow data
across different spatial and temporal scales. PolarGlobe implements former Vice President Al Gore's vision of a
digital earth that enables scientists and citizens across the world to interactively study our planet. We expect the
methods and techniques presented in this work to contribute significantly to both the scientific visualization and
climate science communities.

1. Introduction

Scientific visualization focuses on novel ways of presenting data to
allow salient features to be clearly displayed and hidden patterns to be
easily inspected (Hansen & Johnson, 2011). An effective visualization
strategy facilitates information comprehension at orders of magnitude
faster than reading through the raw numbers and text in the data. Ac-
cording to the NIH (National Institute of Health)/NSF (National Science
Foundation) Visualization Research Challenges Report (Johnson et al.,
2005), visualization plays a critical role in scientific discovery, security,
and competitiveness, and the insights it provides will help to “discover
new theories, techniques, and methods, and improve the daily life of
the general public.” Today, visualization has been leveraged in many
science domains to foster knowledge generation across traditional dis-
ciplinary boundaries (Keena, Etman, Draper, Pinheiro, & Dyson, 2016).

In climate science, scientists have relied intensively on visualization
tools to understand extreme weather events (Wang, Li, Wang, &

Johnson, 2018), analyze atmospheric processes (Helbig et al., 2014),
communicate results with the general public (Dyer & Amburn, 2010;
Johansson et al., 2017), and support informed decision making (Li,
Shao, Wang, Zhou, & Wu, 2016). In the past decade, the entire science
domain for that matter was ushered to the era of big data (Lynch,
2008). Advances in data acquisition techniques, such as environmental
sensor networks, satellite images, and numerical simulation models,
have resulted in the generation of massive amounts of climate data at
an unprecedented speed, resolution, and complexity (Rautenhaus et al.,
2018). For instance, the climate change data collected by the National
Aeronautics and Space Administration (NASA) is expected to reach the
size of 350 PB (Skytland, 2012), which is equivalent to 70 years of the
total letters delivered by the United States Postal Service. The US Na-
tional Centers for Environmental Prediction (NCEP)’s Global Forecast
System (GFS) is generating weather forecasting data at a rate of over
240 GB per day (Han & Pan, 2011). The Geostationary Operational
Environmental Satellite system captures the meteorology data of
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continental US in near- real time (every 5min; GEOS-R, 2018). These
voluminous, multi-dimensional, and multi-variate climate data pose
significant challenges to traditional visualization tools in terms of
dealing and effectively using these big data (Schnase et al., 2017).

Many key climate variables that capture motions in the atmosphere,
such as wind direction and speed, can be categorized as vector field
data. Enabling the effective visualization of such data plays a critical
role in tracking and analyzing extreme weather conditions, such as
tropical storms and typhoons (Seckel, 2018), as well as in identifying
similar flow patterns at different geographical regions and across dif-
ferent spatial and temporal scales (Ingram & Chu, 1987). At the same
time, scientific visualization serves as an important teaching tool to
increase the next generation's interest in science and engineering (Dyer
& Amburn, 2010). Compared with scalar data, such as temperature,
vector field data are more challenging to display, as they contain not
only magnitude values but also directions at a specific point in space. As
some vector field data are unsteady or change with time, this poses
another significant challenge for their visualization.

Several climate visualization platforms, such as Paraview (Ayachit,
Geveci, Moreland, Patchett, & Ahrens, 2012), CDAT (Climate Data
Analysis Tool; Santos et al., 2013), and the Integrated Data Viewer
(IDV), have provided support to the visualization of vector field data.
Specifically, Paraview is an open-source and multi-platform scientific
data visualization software that allows users to quickly build up a vi-
sualization pipeline for analyzing large datasets. CDAT is a similar tool
with a focus on visualizing climate data through its interactive com-
mand line interface. IDV is a software developed by Unidata and pro-
vides support to the visualization of geoscience data from multi-source,
including remote sensing imagery, gridded data, surface observations,
radar data, through a unified interface. These tools facilitate data vi-
sualization in a layer-based (2D) or volume-oriented (3D) setting. Some
support the overlay of vector field data on top of a base map (satellite
image of the area) or a scalar image (temperature); different ways of
presenting vector field data (a more detailed methodological review)
can be found in Section 2).

However, these climate visualization platforms suffer from different
deficiencies. First, existing tools (i.e. Paraview) that offer advanced
vector field visualization has limited capability to examine climate
phenomena in a spatial context. Most tools only provide direct visua-
lization of the data on a blank canvas. The spatial context—where on
earth the phenomena being investigated are occurring are missing. A
2D map is sometimes is provided, but much distortion is generated
when 3D phenomena are projected into a 2D context. Second, support
for the visualization of unsteady vector field data, or data with real-time
characteristics and that are continuously changing over time, is lacking.
Third, an efficient algorithm is needed to realize data rendering. Many
existing solutions rely completely on either hardware acceleration or
software rendering. A combination and balance of these two strategies
are important, especially when moving visualization from a desktop
environment to a web-based environment. Fourth, tools such as CDAT
lack a user-friendly graphic interface. Most visualization functions need
to be invoked through a command line tool programmatically. The deep
learning curve of such tools makes them difficult to use by non-experts.
Fifth, most existing tools remain as standalone applications; there is
limited support to virtual communities and physically distributed
groups.

In recent years, open source libraries, such as Openlayers (2019)
and Cesium (2019) have become popular in developing web-based vi-
sualization systems. They provide rich mapping features and interfaces,
such as rendering of images, gridded and vector data on base maps or
3D globes. Both libraries are built upon open, easy-to-extend archi-
tectures. Several interesting web applications, such as Earth Wind Map
(Beccario, 2019) and Windy.com are built upon these open-source li-
braries. Both of these applications support the visualization of 2D
steady vector field data (such as wind) generated from numerical si-
mulation models, but the lack of support to high dimensional or time-

series data limits their utilities in analyzing complex climate phe-
nomena.

To address the above challenges, this study will introduce our re-
search in developing a vector field visualization technique based on
streamline visualization. This method will take time-series data into
account and provide an effective and efficient rendering strategy for
multi-dimensional, real-time climate data. We also integrated it into
PolarGlobe, a web-scale virtual globe platform that builds on and ex-
tends Cesium to allow multi-dimensional visualization and visual ana-
lytics of big climate data (Li & Wang, 2017; Wang, Li, & Wang, 2017).
The remainder of the paper is organized as follows: Section 2 reviews
recent literature, Section 3 introduces the proposed streamline visua-
lization approach, and Section 4 compares and conducts a series of
experiments to balance performance and visual effect. Section 5 pre-
sents the application of the proposed approach to enable real-time
monitoring of hurricane Florence and other critical movements in the
atmosphere and the ocean, and Section 6 concludes the work and
presents future research directions.

2. Related work

Vector field data visualization methods can generally be categorized
into the following four classes: direct visualization, dense texture-based
visualization, geometric visualization, and feature-based visualization
(Laramee et al., 2004; McLoughlin, Laramee, Peikert, Post, & Chen,
2010; Post, Vrolijk, Hauser, Laramee, & Doleisch, 2003). Below, we
provide a review of these approaches. As feature-based visualization
focuses more on feature extraction, subsetting, and flow tracing instead
of increasing the interpretability of vector field data through visuali-
zation, therefore, this approach is excluded in the review.

2.1. Direct visualization

Direct flow visualization translates the vector field as directly as
possible. It involves simple algorithms and little computation. This
technique is frequently leveraged in 2D visualization; pictures are
produced by placing an arrow glyph (see an example in Fig. 1) at each
sample point to represent the direction and magnitude of a vector field
at different locations, or, more simply, the colors of the vector field data
are mapped according to the given magnitude. Because of the simplicity
and computation efficiency of direct flow visualization techniques, they
are frequently used in climate and meteorology data visualization. In

Fig. 1. An example of direct visualization using arrows glyph. The sample da-
taset used for the demonstration is from Polar-WRF (Weather Research
Forecasting) model with time stamp 2012-01-01 00:00 GMT.
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the work of Doraiswamy, Natarajan, and Nanjundiah (2013), an arrow
glyph is used to visualize cloud movement and glyph colors in order to
represent the time dimension and thus investigate cloud oscillation at
different spatiotemporal scales. Despite its advantages, however, direct
flow visualization suffers from visual complexity and a lack of visual
coherency of the produced image (Edmunds et al., 2012; Edmunds
et al., 2012; McLoughlin et al., 2010).

2.2. Dense texture-based visualization

Dense texture-based techniques represent the vector field by ex-
ploiting textures formed by a cluster of vectors. By covering the entire
domain of datasets, this approach provides a dense visualization result
with plenty of details, capturing many flow characteristics, including
complicated patterns, such as vortices, sources, and sinks (McLoughlin
et al., 2010). In general, this method is more suitable to 2D or surface
visualization, and it suffers similar weaknesses in 3D representation as
direct flow visualization does. The two most commonly investigated
approaches in dense texture-based flow visualization are line integral
convolution (LIC) and texture advection.

LIC was first introduced by Cabral and Leedom (1993). Several
extensions, improvements, and variants have been proposed thereafter,
such as parallel LIC (Zöckler, Stalling, & Hege, 1997), oriented LIC
(Wegenkittl, Groller, & Purgathofer, 1997), volume LIC (Rezk-Salama,
Hastreiter, Teitzel, & Ertl, 1999), and HyperLIC (Zheng & Pang, 2003).
Given a vector field on a 2D Cartesian grid as the input, the original LIC
method converts it to a white noise texture with the same input size to
create a dense visualization of the flow field by integrating the path of
streamlines and applying different filters. Fig. 2 illustrates examples of
flow visualization using the original LIC (Figure2a) and the oriented LIC
(Fig. 2b) techniques.

A representative method for texture advection flow visualization is
image-based flow visualization (IBFV), which provides a faster re-
presentation for the dense, 2D, unsteady vector field (van Wijk, 2002).
Applying the advection and decay operations on textures in the image
space, this visualization method produces each frame by blending be-
tween the warped image to represent vector field directions, and sev-
eral background images that consist of white noise textures. This
method reduces computations by performing integration on advected
small quadrilaterals instead of individual pixels, making the algorithm
faster than many other dense texture-based flow visualization methods
(Laramee et al., 2004). Other studies have attempted to identify specific
hydrodynamic features and processes by implementing the IBFV algo-
rithm to effectively visualize 2D time-dependent vector fields (Warne,
Larsen, Young, & Cox, 2013). Warne argued that dense texture-based
flow visualization performs better than direct and geometric-based

methods in presenting the complex flow regimes of a shallow tidal
barrier estuary.

While a number of dense texture-based solutions have been devel-
oped for 2D unsteady flow and surface visualization (van Wijk, 2002;
Wijk 2003), their applications in 3D flow fields remain limited, espe-
cially in the case of visualizing unsteady flow, which involves high
memory demands and additional memory I/O bandwidth for the effi-
cient processing of vector data (Falk & Weiskopf, 2008). This problem
becomes more significant when dealing with real-time vector field data.
Moreover, perceptual issues in texture-based approaches are considered
to be even more difficult than hardware limitations. Directly observing
3D data in a 3D space is a challenging task for the human eye and brain
(Laramee et al., 2004). In comparison, geometric-based flow visuali-
zation based on particle animation is considered a better approach in
presenting the 3D vector field.

2.3. Geometric visualization

In research on geometric approaches for flow visualization, the
focus has mainly been on streamline visualization because of its effec-
tiveness and the quality of its produced results, as well as the ease in its
implementation compared with those of other geometric methods
(McLoughlin et al., 2010). In streamline visualization, a certain number
of seeds are placed on a canvas, and a curve is drawn from each seeding
location; every point along the curve is tangent to the instantaneous
local velocity vector. The resulting image will illustrate that the path of
the velocity and the visual effect are significantly affected by the pla-
cement of streamlines. For instance, an unevenly distributed streamline
that results from an arbitrary seeding strategy may fail to precisely
represent some critical patterns in the vector field. Some previous
studies (Bürger, Schneider, Kondratieva, Krüger, & Westermann, 2007;
Edmunds, Laramee, Chen, et al., 2012; Edmunds, Laramee, Malki, et al.,
2012; Spencer, Laramee, Chen, & Zhang, 2009; Ye, Kao, & Pang, 2005)
have investigated an interactive or automatic seeding strategy that
helps optimize streamline distribution and produce insightful visuali-
zations.

Other studies have examined the application of streamline visuali-
zation in depicting climate phenomena. For example, a recent work
(Shen, Nelson, Tao, & Lin, 2013) demonstrated how streamline visua-
lization can help improve the understanding of tropical cyclone (TC)
formation and intensification by enabling the interactive exploration of
TC with environmental flows. This visualization generates streamlines
at different heights to illustrate their structure and cross-scale interac-
tion with surrounding flows. However, this visualization remains 2D.
Fig. 3 shows an example of streamline visualization.

Extending the streamline visualization from 2D to 3D clearly

Fig. 2. Illustration of vector field visualization with LIC (a) and oriented LIC (b) techniques. The same sample dataset used in generating Fig. 1 is used here.
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presents an advantage in providing more perceptual information and a
more comprehensive view of 3D objects or phenomena. Lighting and
shading provide better clues in object depth and structure in 3D,
compared with 2D line primitives. The construction and rendering of
unsteady, time-varying flows in 3D are clearly significant problems that
involve challenges in rendering performance, visual errors and un-
certainty, visual complexity, and perception issues, as well as interac-
tion and integration issues with large data sets (Edmunds et al., 201;
McLoughlin et al., 2010).

In this study, we propose a general geometric flow visualization
method for vector field data visualization. This method can be applied
in either a 2D or 3D vector space, and it is applicable to both steady and
unsteady flow data. More design features and the rationale of this
method can be found in Section 3.

3. Methodology

3.1. Vector field data

Scientific data, which can be abstracted as a vector field, are the
focus of the visualization task. These data, which are time varied, multi-
dimensional, and multi-variate, are the products of large-scale numer-
ical simulation models, so they are a typical set of big data. For in-
stance, one of the datasets we integrated into our visualization platform
is GFS real-time and 10-day forecast data (Han & Pan, 2011). GFS is run
by NCEP. The simulation output for the forecast of the global weather
was generated every three hours and openly shared with the public.
These datasets include 9 variables in 21 pressure levels, and the total
data volume generated per day are about 240 GB, or a total of nearly
90 TB per year in general regularly-distributed information in binary
format. With a typical vector field data, such as wind, on each pressure
level covering a certain geographical extent, four variables<
x,y,z,s> can be used to represent a wind vector. x, y, and z in this
quadruple refer to the wind vector components in the horizontal (x,y)
and vertical (z) dimensions, whereas s represents the speed component.
Many other vector field data, such as ocean current, may be represented
using the same 3D data model. The above data are represented in a
regular data grid, namely, the same number of points is generated to
represent data at different latitudes; see an example in Fig. 4a. Although
our demonstration primarily uses this dataset, the proposed algorithm
can also take irregular grid points (Fig. 4b) as input. An additional in-
terpolation step will be required to convert the data into regular
gridded data.

3.2. Geometric flow visualization for an unsteady data field

The time-varying and 3D characteristic of vector field climate data,
such as atmospheric wind, makes it an unsteady data field. As discussed
above, geometric visualization techniques are powerful in 3D unsteady
data field visualization, as they provide an optimal effect for human
perception and enable high visualization efficiency. We therefore use
geometric visualization and line geometries to depict (Ayachit et al.,
2012) the flow speed and direction at local scales, as well as (Beccario,
2019) flow features (such as cyclone for wind data), their corre-
sponding movement, and shape transformation at the regional scales.

3.2.1. Method overview
The proposed flow/streamline visualization involves the following

steps. First, a number of particles (seeds) are randomly but evenly
placed within the extent of the vector field data. In Fig. 5(a), grey points
show the (2D) regular grid on which the vector field data are available.
Black points are randomly placed particles that serve as seeds of the
streamlines. Instead of being kept static, the particles will move ac-
cording to the direction and magnitude defined in the vector field. A re-
seeding process is also automatically applied once an existing seed
moves out of the current viewing space. This process ensures that the
particles can be redistributed at other positions rather than remain
static. This also mitigates issues on uneven particle distribution in
commonly used seeding strategies.

Second, to improve the rendering efficiency and visual effect, the
streamline will not be drawn all at once or within a single iteration.
Rather, we introduce a divide and conquer strategy to segment this
rendering task into sequential subtasks, with each task being performed
in one iteration and responsible for generating primitives that are a part
of the line. As one subtask finishes drawing, a partial streamline is
created, and the particle moves to a new location (Fig. 5b). The next
subtask in order will continue drawing the streamline from this new
particle location (Fig. 5c).

Third, a fading effect is applied to emphasize the newly drawn
segments of the streamline and gradually fade out the part of the
streamline that was drawn several iterations ago (Fig. 5d). To ensure a
good visual effect, once the streamlines fill up a substantial portion of
the canvas, they will be erased from the canvas. New seeds will then be
placed, and the same rendering flow will be applied for iteratively
rendering the streamlines.

The proposed divide and conquer strategy enables an animation
effect even for static vector field data such that the shape and moving
pattern of a phenomenon can be better captured. Furthermore, by
breaking down the streamline visualization task into sequential sub-
tasks (iterations), the amount of computation in each iteration is sig-
nificantly reduced. This is a strategy designed specifically to address the
challenges of big data visualization in a web-based environment. In this
environment, visualization performance is always restrained by client-
side resources, resulting in difficulties in achieving on-the-fly rendering.

At the level of implementation, we also combine this divide and
conquer rendering strategy with hardware acceleration. The entire
canvas on which the streamlines will be drawn is partitioned into
several sub-regions. The streamline rendering tasks on each of these
sub-regions will be handled concurrently by the parallel computing
units on the client graphics processing units (GPUs). This way, real-time
rendering can be better achieved.

3.2.2. Formulating the line generation process
The line generation process involves drawing the streamlines

iteratively according to the vector field data. We first define an un-
steady vector field as v(p, t). The speed or magnitude of vector v
changes as location p and time t change in continuous space. In this
definition, p can move not only within 2D space (that is p∈ R2) but also
within 3D space (p∈ R3).

First, k particles (seeds) will be randomly placed within the space to

Fig. 3. An example of streamline visualization. The same sample dataset used in
generating Fig. 1 is used here.
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serve as the starting location of the streamlines. pi(t) represents the
location of particle i (i∈ {1,2,…,k}) at time t. Its initial position is
pi(0). A particle moves in 3D space iteration by iteration, within which
a small segment of a streamline is drawn, and the segment is tangent to
the local vector field. Eq. (1) defines how a particle i moves in each
iteration:

+ = +p p v pt t t t t t( ) ( ) ( ( ), )·i i i (1)

The direction of movement is determined by vector field v at start
position pi(t) at time t. The distance of travel is jointly determined by
the velocity of v and time interval Δt. Given known vector field data, Δt
should be carefully selected to ensure a good visual effect. If Δt is too
large, the particle travels far, and the velocity and direction at the new
position may be significantly different from its previous movement. The
resultant streamline may have many abrupt turns instead of running
smoothly. A general guideline is that the traveled distance per unit
time, v(pi(t), t) · Δt, should be no larger than the spatial resolution of the
vector field grid. More experiments are conducted in Section 4 to il-
lustrate how different choices of Δt make an impact on the visual effect.

The movement of the particle generates a line segment, a small

portion of a streamline during the iteration at time t. The mathematical
expression of the line segment Li(t) is given by Eq. (2):

= +p v pL t t t t t( ) { ( ) ( ( ), )· | [0, ]}i ii (2)

According to Eq. (1), this line segment spans from pi(t) to pi(t+ Δt).
The movement of all k particles will follow the above defined pat-

tern. Correspondingly, at each iteration, k line segments will be gen-
erated simultaneously. Besides illustrating the movement, each line
segment can also be displayed in different colors to indicate the mag-
nitude of the flow, such as velocity. We then further define a value (σ)
assignment to a line segment at any arbitrary position p and time t with
Eq. (3):

= v p t if p L t i k
otherwise

( , ) , ( ), {1, 2,.. }
0,

i

(3)

During the iteration at time t, the value at position p is assigned as
the magnitude of the vector field at the same position, if p is on any line
segments Li(t) drawn at this iteration. Otherwise, the value is set to 0.
Thereafter, a color scheme c(x) is applied to the drawing space, con-
verting numerical values to red green blue alpha (RGBA) colors. Alpha
is a parameter that shows the transparency at a certain location. It
ranges from 0 (fully transparent) to 1 (fully opaque). Thus, at each
position p, we have a color c(σ(p, t)), an RGBA quadruplet, assigned to
it.

When the process is performed iteratively, two streamlines may
inevitably pass the same position at the same or different time. In order
to better determine the color pattern at this position, a blending func-
tion b() is introduced to combine the incoming color C at iteration t and
the accumulated color Cacc from t=0 to t- Δt. Eq. (4) defines how the
color pattern is determined at location p and time :

=
=

>
p

p
p p

C t
c t

b c t C t t t
( , )

( ( , 0)), 0
( ( ( , )), · ( , )), 0

.acc
acc (4)

As seen in Eq. (4), a new parameter γ is introduced in this blending
function. γ is a fading factor that determines how much the color ac-
cumulates before the current time point Cacc(p, t− Δt) contributes to
the blended result. It has a value range of [0,1]. When γ=1, there is no
fading effect applied. When γ=0, the previous color will be completely
erased. With this fading factor applied, the newly drawn colors will be
brighter, and the older ones will be dimmer. The blended color will
support a better interpretation of the results.

Given two colors C1 and C2, the blend function emulates the overlay

Fig. 4. Example of regular (a) and irregular gridded (b) data points from the climate simulation models.

Fig. 5. – Illustration of the generation of linear geometries (i.e. wind direction)
to enable streamline visualization. a) Initialize particles for streamline visua-
lization. b) Results after the first iteration. c) After several iterations, the
streamline is formed. d) Apply fading effect to the streamline.
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of a translucent color C1 onto C2. Eq. (5) provides its mathematical
expression. This blending function is also known as alpha blending,
which emulates the overlay of a translucent color on another one. This
blending function is shown in Eq. (5) as follows:

= =
= +

= +
b C C C

C C C C C C C C
C C C C C C

( , )
( , ) (1 )

( , ) (1 )RGBA
RGB A RGB A A RGB

A A A A
1 2

1 2 1 1 1 2 2

1 2 1 1 2

(5)

The subscript RGBA represents a different color component.

3.3. Visualization on a virtual globe

Realizing real-time data rendering, especially in a cyber-environ-
ment, is challenging. Highly efficient data transfer, memory manage-
ment, and vivid visualization are required. To address these big data
challenges, we leverage the data compression method introduced by Li
and Wang (2017) to mitigate the impact on performance while visua-
lizing voluminous data. Compared with the application of applied
streaming compression to scalar data in Li and Wang (2017), com-
pressing vector field data follows a similar workflow: (Ayachit et al.,
2012) transforming multi-dimensional grids into a large 2D image
through vertical layer-based reorganization and colorization encoding
of each data point, (Beccario, 2019) applying step 1) to the data at each
timeframe and generating a series of 2D images, each of which presents
data at a single timeframe, and (Bürger et al., 2007) leveraging video
codecs to compress the image series into a video. Note that vector field
data are normally described by multiple variables. Each variable is a
component of the vector. Therefore, in step (Ayachit et al., 2012), each
of these data components will be encoded into a 2D image according to
some predefined rule and will be recovered according to the rule once
the data arrive at the browser side. The advantage of using video-based
encoding instead of image- or other text-based encoding is that the data
stream can be parsed and rendered at the client side as it is being
transmitted. There is no need to wait for all data to arrive before be-
ginning the decompression and the rendering process. Therefore, high
rendering performance and an interactive framerate can be achieved.

An additional challenge is in the rendering of 3D spatially enabled
vector field data into a 3D geographical space, which is the virtual
globe in our case. A key step is to ensure the accurate placement of
corresponding data values from the original data space to their actual
spatial location above or below the spherical earth surface. Here, we

proposed a spatial data (re)projection pipeline (Fig. 6) to achieve the
3D visualization of multi-dimensional spatial data. First, to best re-
present the geo-location on a spherical earth surface, the gridded data
could either be represented by latitude and longitude in a world geo-
graphical system (WGS), for instance, WGS 84, or a projected co-
ordinate system, such as Web Mercator, which uses meters to represent
the offset of a point from the origin in its x, y, and z coordinates. Once
gridded data are parsed, a value in a data point can be referred by its
row and column indices. Hence, the first step involves the conversion of
the grid cell index into its actual x, y coordinates according to the
corresponding data projection. Second, the x and y coordinates, as well
as the height information (z dimension) in the data, need to be further
projected into the 3D Cartesian coordinate system (CCS) because this
system is what is commonly used by virtual globes as their default
coordinate system. In a CCS, the origin is located in the center of the
earth, with the z axis often directed toward the North Pole. Finally, the
3D coordinates in the 3D CCS will be converted to 2D screen co-
ordinates to display the final visual effect.

4. Performance experiments and results

This section examines the performance of the proposed 3D flow
visualization method by conducting several quantitative analyses and
comparisons of the visual effects. Considering that we developed this
method to realize a web-based vector field visualization, the client
machine we used in this experiment only has an average hardware
configuration to simulate a client with average performance. It has a
16 GB memory, a quad-core processor at 3.4 GHz, and an AMD Radeon
HD 6970M video card with 2 GB graphics memory. The runtime en-
vironment uses the latest Google Chrome (v65.0.3325.181) with
MacOS 10.11.6. All the images included in this section are rendered
with a perspective projection. The angle of the field of view of the
viewing frustum is 60 degrees. The viewing direction is set to be per-
pendicular to the virtual globe surface. The data in use are GFS real-
time forecast, as described in Section 3.1.

4.1. Impact of randomly generated particles on the rendering performance

As discussed in Section 3.2.1, the flowlines are drawn from a
number of seed particles evenly placed on the virtual globe. For each
seed, the following attributes need to be derived through interactive

Fig. 6. A data reprojection pipeline to enable the virtual globe visualization of multi-dimensional spatially enabled scientific data.
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calculation in the visualization process: (Ayachit et al., 2012) the right
drawing location on the virtual globe and (Beccario, 2019) the color
and angle of the flowline to reflect the magnitude and directions of the
vector field. Therefore, the more particles to generate, the more com-
putation will be involved. To identify the proper number of initially
generated particles given the constraints of computing power at the
client GPU, we conducted the following experiment to compare the
time cost per frame for flowline rendering with the changing particle
number. The results are shown in Fig. 7.

In Fig. 7, the x axis represents the number of generated particles,
and the y axis indicates the average time cost for rendering each frame.
Ideally, this time should be< 1/60 s (approximately 16.67ms) to
match the refresh rate (60 Hz) that most commercial monitors support.
The results show a dramatic increase in rendering time as the number of
particles increases. Limiting the number of particles below 0.7 million is
better to provide most users a smooth animation. In PolarGlobe, we use
this as the particle setting, and it is also used in the subsequent ex-
periments.

4.2. Impact of the fading factor on the visual effect of the vector field

In this section, we further investigate the impact of the fading factor
on the visual effect. As discussed in Section 3, a fading effect is in-
troduced when blending the two scenes of vector field data, which re-
present a part of a vector or its change over time (Eq. (4)). The fading
factor (γ) controls the effect of fading, and it also aims to reduce visual
complexity and ease the perception of the direction of the vectors. A
fading factor with an excessively large value may result in dense and
chaotic flow visualization. By contrast, when the value of the fading
factor is small, the length of flow lines will be short, making it difficult
to observe traces of particles and the direction of vectors. We evaluated
the impact on such a visual effect by applying different fading factors.
The comparison investigated a cyclone visualization in Northern
Europe. The viewing distance (altitude of the view point) is 4× 106

meters. The comparison results from left to right are shown in Fig. 8.
The fading factors from left to right are set to 0.52, 0.846, and 0.952. It
is clear that when γ is small (0.52), one can hardly observe the shape of
the cyclone, whereas when γ is high (0.952), the cyclone trace becomes
very dense, and traces at different pressure levels intersect. When γ is
set to a proper value (0.846) in this case, the shape and directions are
clear and easy to inspect.

However, a static fading factor cannot always guarantee the best
visual effect. The density of the drawn flow lines varies when the zoom
level changes. In a virtual globe environment, zooming is achieved by
modifying the viewing distance. In order to optimize the visual effect of
flowlines and the animation, deriving a mapping between the viewing
distance and the fading factor is important to obtain a dynamic balance
between flowline density and the viewing distance. We formulate such
a mapping with the following equation:

= max k d(0, 1 · ) (5)

where d is the viewing distance and k is a constant which adjusts the
value of fading factor as the viewing distance changes. An empirical
value k=1.6×10−8 is used in our work based on the rational that the
fading factor γ should stay at around 0.8 to avoid the streamlines to be
too dense when the full globe view is presented (at d=12,000km). The
max function ensures that the produced fading factor will be in the
desired value range. A comparative experiment is performed to de-
monstrate the visual effect at different viewing distances and examine
the feasibility of the above equation. The results are shown in Fig. 9.

In Fig. 9, the left column presents the rendered images with a static
fading factor. With this configuration, the visual effect is acceptable
when the viewing distance is at around 5000 km. However, the sparse
geometries drawn at a smaller viewing distance (d= 1000 km) made it
more challenging to interpret the direction of the vector fields. With a
far viewing distance (d= 10,000 km), geometries become too dense
and disturbing to observe the patterns and changes. The direction of
geometries can sometimes be hardly interpreted, especially when some
nearby geometries flow into different directions. Additionally, the base
map becomes difficult to recognize when the geometries are too dense.
The visual effect during an animation will be even worse when the data
are visualized on a large scale and on full screens. The right column
presents the results that apply the dynamic fading factor derived from
Equation (Doraiswamy et al., 2013). At all zooming scales/viewing
distances, the density of the rendered geometries is well balanced, re-
sulting in a cleanly rendered and easily interpreted visualization.

4.3. Impact of scene switching frequency on the visual effect of the vector
field

Besides the fading factor, which decides how information in the old
scene and that in the new scene are blended together, another factor
that influences the visual effect of the flowline is the frequency in
loading a new scene. This is the same as Δt in Eq. (1), which indicates

Fig. 7. Rendering efficiency with different numbers of particles.

Fig. 8. Visual effect with different fading factors.
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the time span that a flowline is going to move according to the speed
and direction at the original location. A scenario with too frequent
scene switching, or a small internal Δt, will introduce extra computa-
tion, that is, interpolation from the gridded data to estimate the data
value at any arbitrary spatial location that a flowline moves to. By
contrast, a low frequency (large Δt) may possibly generate a flowline

with abrupt changes because if a particle moves too far, the data values
at the new location may be more significantly different from those at
the particle's original position. Fig. 10 illustrates this effect. When a
proper Δt is set, the flowline goes rather smoothly both globally and
locally (red box in Fig. 10a). However, as Δt increases, the generated
flowlines show more deformation and become less realistic (Fig. 10b

Fig. 9. Visual effect at different viewing distances.

Fig. 10. Flowline deformation with an increased Δt. In case (b), the interval is set to be four times of that in case (a), and Δt in case (c) is sixteen times as that in case
(a). The viewing distance is 3000 km in the scenes.
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and c). In our experiment, the gold standard is to set the Δt such that the
moving distance of a particle within one scene is less than the spatial
resolution of the data itself.

4.4. Impact of data resolution on the visual effect and efficiency

A notable advantage of this proposed method for vector field vi-
sualization is the lack of an impact of data volume or data resolution on
the rendering efficiency, as the generation of the flowline is controlled
by the number of particles placed on the virtual globe instead of the
number of points in the original data. Therefore, even when the data
resolution is low, our method remains capable of generating a sa-
tisfactory visual effect. When the data resolution becomes high, more
precise visualization occurs without sacrificing the rendering perfor-
mance. We conducted an experiment to examine this from the per-
spectives of both visual effect and rendering efficiency, as shown in
Figs. 11 and 12, respectively.

We down-sampled the original data from the GFS model to create
the half-resolution, quarter-resolution, and one-eighth-resolution vector
fields. The data size decreases accordingly. Visualization with the same
parameters but different data resolutions is enabled by setting the op-
timal number of total particles derived from experiment IV.A. The vi-
sual effects are presented in Fig. 11. The visual effects at four data re-
solutions are all vivid. But as the data resolution increases, the rendered
image captures and conveys more details, which present local changes
in the flowlines (see the areas in white boxes in Fig. 11). The effect of
the coastline on the data flow is also better captured in the visualization
using higher-resolution data. The rendering efficiency with changing
data resolutions is shown as Fig. 12. Neither an obvious positive nor
negative correlation between these two factors can be observed. The
rendering efficiency remains quite consistent across data at different

resolutions. Therefore, we have confirmed that data size and data re-
solution can hardly affect the rendering efficiency of the proposed
method.

4.5. Leveraging PolarGlobe to support climate studies

Utilizing the proposed streamline visualization technique and
leveraging the real-time climate forecast data from GFS, PolarGlobe is
capable of vividly demonstrating changes in the atmosphere and in real
time. Fig. 13(a) illustrates the real-time visualization (on September
12th, 2018) of global wind in the 2018 North Atlantic hurricane season.
Three active tropical storms that were formed can be clearly observed:
category 4 Hurricane Florence, Hurricane Isaac, and Hurricane Helene.

Fig. 11. Impact of data resolution on the visual effect.
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Fig. 13. Leveraging PolarGlobe to observe changes in climate and on earth and in real-time.
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In this same week, storm activity reached a historic high in the Atlantic
hurricane season. Projected trajectories can also be viewed and turned
on and off to aid comprehension (Fig. 13b). On September 14th, as the
hurricanes progressed and Florence finally made landfall, one can ob-
serve a very clear and distinct eye wall with a much stronger accu-
mulated wind speed (Fig. 13c). All these screenshots are captured in
real time. PolarGlobe also has the ability to cache real-time data in the
past two weeks and 10-day forecast data from the GFS model.

Besides integrating the GFS model, PolarGlobe has also in-
corporated data from other numerical simulation models, such
as the Polar version of the Weather Research Forecast
Model—PolarWRF—and the ocean-atmosphere circulation model CM
2.5. These models include a variety of variables covering both land and
ocean on earth. Fig. 13(d) shows the monitoring of spatiotemporal
changes in temperature in the Greenland region leveraged by high-
performance volume rendering, spatial filtering, and value picking (Li &
Wang, 2017). Fig. 13(e) shows a multi-variate view of undersea water
temperature (color) and the movement of ocean current (direction)
near the Antarctic ocean leveraging the proposed streamline visuali-
zation techniques over big data. These enabling techniques can sig-
nificantly help answer questions on global climate change and solve
pressing issues in the Polar regions.

5. Conclusions

This study introduces PolarGlobe, a large-scale, multi-dimensional,
virtual globe-based scientific visualization tool that allows online access
to big numerical simulation data on the climate and ocean in real time.
Specifically, we introduced a streamline visualization technique that
incorporates the following methodological advances: (Ayachit et al.,
2012) the algorithm is naturally parallelizable by partitioning unsteady
vector field rendering tasks into finer granularity in the algorithm de-
sign; (Beccario, 2019) the seed placement strategy ensures high-per-
formance rendering and an interactive framerate regardless of the ori-
ginal data resolution; (Bürger et al., 2007) a data (re)projection pipeline
allows the automatic transformation of raw scientific data in any data
projection to a 3D virtual globe projection and, eventually, to the screen
coordinate system for multi-dimensional visualization; (Cabral &
Leedom, 1993) a careful calibration and dynamic adjustment of ren-
dering parameters ensure an optimal visual effect across different spa-
tial and temporal scales; and (Cesium, 2019) the integration of the
proposed technique into the PolarGlobe visualization platform enabled
by a highly efficient big data transmission technique over the
Internet allows anyone from the globe to access the portal and perform
interested analysis.

This work has produced a novel visualization solution that enable
interactive, dynamic, real-time visualization of multi-dimensional,
time-series climate data on an online virtual globe. Different from
commonly used climate visualization, which is always single-layer
based and/or uses 2D presentation, the proposed tool allows situating
climate phenomena in a near-real geographical context. With
PolarGlobe, the unknown spatiotemporal dynamics in the climate can
be uncovered, and the regional to global climate complexity, as well as
the interactions between the local terrain and changes in the atmo-
sphere, can be better understood. With the addition of the time di-
mension, the temporal change of climate variables is captured in real-
time. To sum up, PolarGlobe responds directly to the former President
Barack Obama's Climate Action plan by providing a powerful tool that
help uncover the driving factors of the extreme weather and climate
disasters. Besides supporting climate science (Seckel, 2018), the tech-
niques reported in this paper can be easily adapted to visualize data in
other Earth science domains, such as oceanography and polar sciences.
PolarGlobe also provides an easy-to-access and user-friendly graphic
interface by which not only scientists but also general public and
younger generations would be capable of interactively viewing and
understanding our living planet.

In the future, we will further advance the PolarGlobe platform by
developing an adaptive and general interface to allow the fusion and
visualization of climate data from diverse simulation models and
sources. We will also pack the PolarGlobe system to make it open
source, thus benefiting the broader climate science and scientific vi-
sualization communities.
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