

Welcome to coreR

NCEAS Learning Hub for Delta Stewardship Council

June 2024

Week's Schedule

	RM 2-310		RM 2-309		RM 2-310		RM 2-310		
Session Time	<u>Monday</u>		<u>Tuesday</u>		<u>Wednesday</u>		<u>Thursday</u>		<u>Friday</u>
8:30-10:00	Introduction	Camila	Cleaning & Wrangling Data	Angel	Publishing to the Web	Angel	Shiny cont'	Camila	
	Set up				Intro to Data Viz				
10:00-10:30	BREAK		BREAK		BREAK		BREAK		
10:30-12:00	Literate Analysis with Quarto	Camila	Practice Session I		Working with Spatial Data	Angel	Wrap-up: Reproducibility & Provenance	Camila	
							Survey + Q&A		
12:00-1:00	LUNCH		LUNCH		LUNCH		ADJOURN		
1:00-2:30	Introduction to Git & GitHub	Angel	Collaborationg with Git & GitHub	Angel	Practice Session II		Technical		
							Non-Technical		
2:30-3:00	BREAK		BREAK		BREAK		Practice		
3:00-4:30	Tidy Data	Camila	Data Management	Camila	Intro to Shiny	Camila			

An immersion course in **R programming for environmental data** science.

You will gain experience on how to leverage the use of data science tools to increase your capacity to **collaborate** with your team, create **reproducible** <u>workflows</u>, and learn **best practices for open science**.

About this course

Collaborative 0 R Ε

${\color{blue}C} ollaborative$

O pen

R

Ε

C ollaborative

O pen

Reproducible

Ε

C ollaborative

O pen

Reproducible

E nvironment

Environmental data science:

Artwork: @allison horst

And building robust workflows.

U.S National Science Foundation (NSF) subcommittee on replicability in science: "reproducibility refers to the **ability of a researcher to duplicate the results of a prior study using the same materials as were used by the original investigator**"

Goodman et al 2016

Types of reproducibility

- "Computational reproducibility: When detailed information is provided about code, software, hardware and implementation details."
- "Empirical reproducibility: when detailed information is provided about non-computational empirical scientific experiments and observations. In practice, this enabled by making data freely available as well as details of how data was collected."
- **"Statistical reproducibility:** when detailed information is provided about the choice of statistical tests, model parameters, threshold, values etc. This mostly related to pre-registration of study design to prevent p-values hacking and manipulations."

Victoria Stodden, 2014, <u>ROpenSci Reproducibility Guide</u>

Types of reproducibility

- **"Computational reproducibility:** When detailed information is provided about code, software, hardware and implementation details."
- **"Empirical reproducibility:** when detailed information is provided about non-computational empirical scientific experiments and observations. In practice, this enabled by making data freely available as well as details of how data was collected."
- **"Statistical reproducibility:** when detailed information is provided about the choice of statistical tests, model parameters, threshold, values etc. This mostly related to pre-registration of study design to prevent p-values hacking and manipulations."

Victoria Stodden, 2014, <u>ROpenSci Reproducibility Guide</u>

Does this look familiar?

Is this \downarrow how you've been working with data? Cool! If it has been working for you, feel good about it.

Allison Horst, EDS 221, Scientific Programming Essentials

A common workflow

Paste COPY Re-copy / Re-paste Paste LOON Paste CODV Copy / Paste Re-copy / Re-paste Copy / Paste Paste

≻ w

Allison Horst, EDS 221, Scientific Programming Essentials

A common workflow

Allison Horst, EDS 221, Scientific Programming Essentials

Room for improvement

- No history of what has been done to the data. From raw data to final figures/results.
- Lack of documentation on the step by step process.
- What happens if data is updated? We need to repeat every process?
- How do we collaborate with colleagues? Back and forth emails and versions of files with inevitably long file names (final_report_v1_CVP_AC_review_new_this_one.docx)
- How do we transfer analysis to final reports? Is this reproducible?

Work with your data like it's going to need an alibi

Allison Horst

Do everything in **well-annotated and organized scripts** that contain streamlined and easy-to-follow records of your entire analysis from **raw data** through **final reports** with **unbreakable file paths** and **complete history** of changes made.

Adapted from Allison Horst, EDS 221, Scientific Programming Essentials

Adapted from Allison Horst, EDS 221, Scientific Programming Essentials

- Hadley Wickham (from <u>fivebooks.com interview</u>)

Adapted from Allison Horst, EDS 221, Scientific Programming Essentials

Reproducibility starting point: Set up a robust structure

Reproducibility starting point: Set up a robust structure

Artwork: @allison horst

Reproducibility starting point: Set up a robust structure

- The fundamental idea behind a reproducible analysis is a **clean**, **repeatable script-based workflow**.
- This will allow you to **re-run your analysis as many times** as needed before (and after) the completion of your project.
- The smoother and more **automated the workflow**, the easier, faster and more robust the process of repeating it will be.

1. Use a scripted (programming) language

- 2. Use one folder per project
- 3. Organize the content of your project with sub-folders
- 4. Set up robust file paths

Talk to your neighbor

- How do you generally organize your files for a project?
- What do you like about your system?
- Do you see any limitations to your system?

1. Use a scripted (programming) language

How do you tell your code where to find files?

Artwork by Allison Horst

How do you tell your code where to find files?

some_data <- read.csv("/home/vargaspoulsen/Documentes/Workshops/RLadies-SB/reproducibleworkflows/some_data.csv") How do you tell your code where to find files?

some_data <- read.csv("/home/vargaspoulsen/Documentes/Workshops/RLadies-SB/reproducibleworkflows/some_data.csv")

If I share my script with this file path to my colleagues, would they be able to open the file?

Probably not.

• Provides a **self contained working directory** (folder) that does not depend on the absolute location of your computer.

• Provides a **self contained working directory** (folder) that does not depend on the absolute location of your computer.

• Bundles all your work within a working directory, pointing to relative locations within the project.

• Provides a **self contained working directory** (folder) that does not depend on the absolute location of your computer.

• Bundles all your work within a working directory, pointing to relative locations within the project.

• Within this centralize location we can organize all the files involved in our project (inputs data, scripts, outputs, etc.)

When you create an *R Project*, it **creates and Rproj file and a folder in your computer that will be the working** *directory* when your are working in your Rproj.

• An absolute path always starts with the root of your file system and locates files from there.

/home/vargas-poulsen/Documents/Workshops/RLadies-SB/reproducible-workflows/data/data.csv

• An absolute path always **starts with the root of your file system** and locates files from there.

/home/vargas-poulsen/Documents/Workshops/RLadies-SB/reproducible-workflows/data/data.csv

• Relative paths start from some location in your file system that is below the root. That is the starting point to locate a file on your system

• An absolute path always **starts with the root of your file system** and locates files from there.

/home/vargas-poulsen/Documents/Workshops/RLadies-SB/reproducible-workflows/data/data.csv

• Relative paths start from some location in your file system that is below the root. That is the starting point to locate a file on your system

If my R project is named reproducible-workflows, then the relative path to data.csv, starting from the project directory will be data/data.csv.

• An absolute path always starts with the root of your file system and locates files from there.

/home/vargas-poulsen/Documents/Workshops/RLadies-SB/reproducible-workflows/data/data.csv

• Relative paths start from some location in your file system that is below the root. That is the starting point to locate a file on your system

If my R project is named reproducible-workflows, then the relative path to data.csv, starting from the project directory will be data/data.csv.

R projects set the file path relative to the project's directory (folder)

1. Use a scripted (programming) language

- 2. Use one folder per project
 - 3. Organize the content of your project with sub-folders
 - 4. Set up robust file paths

• Ensure that the structure of the folders and location of files in your project are **consistent**.

- Ensure that the structure of the folders and location of files in your project are **consistent**.
- The location of files should be as **informative** as possible on what a file contains.

- Ensure that the structure of the folders and location of files in your project are **consistent**.
- The location of files should be as **informative** as possible on what a file contains.
- The idea is to organize your research into a compendium that has all of the digital parts needed to replicate your analysis, like code, figures, the manuscript, and data access.

- Ensure that the structure of the folders and location of files in your project are **consistent**.
- The location of files should be as **informative** as possible on what a file contains.
- The idea is to organize your research into a compendium that has all of the digital parts needed to replicate your analysis, like code, figures, the manuscript, and data access.

Let's take a look at one example

Analysis related scripts

Example of project organization

3. Organize the content of your project with sub-folders

General organization recommendations

- Keep your **Raw data Raw** Never edit your raw data.
- Clearly **separate raw** data **from "clean"** processed data.
- **Review external inputs** to make sure they align with the established organization structure.
- Define informative **file naming conventions**.

- Different operating systems use different characters to define file paths.
 - Mac and Linux uses <u>slashes</u> (e.g. plots/diamonds.pdf)
 - Windows uses <u>backslashes</u> (e.g. \plots.pdf).
 - ~ is a convenient shortcut to your home directory on mac
 - Windows doesn't really have the notion of a home directory, so it instead points to your documents directory.

R for Data Science (Grolemund & Wickham)

How to make your file paths within your project robust?

Artwork by <u>Allison Horst</u>

"The goal of the here package is to enable easy file referencing in project-oriented workflows. In contrast to using setwd(), which is fragile and dependent on the way you organize your files, here uses the top-level directory of a project to easily build paths to files."

here.r Documentation

It allows us to **navigate through the files in our project** without having to worry about operating system issues. here() starts from the working directory, aka your Rproj folder.

If I'm working within my R project, to read
some_data.csv, inside the raw folder in this case, I
can use the here::here() function.

some_data ← read_csv(here::here("data", "raw", "some_data.csv"))

R Projects + here() = robust file paths

BIG first step towards reproducible workflows!

Artwork by Allison Horst

Organization Wrap up

One of the first steps to achieve reproducibility is to **set up a <u>robust structure</u>** for our work.

Scripted analysis

One folder with organized content

Robust file paths

Artwork by Allison Horst

Organization Wrap up

reproducible_project

reproducible_project

Self contained project with all file paths relative to folders within the project, analysis can be reproduced elsewhere

- Best Practices for Writing Reproducible Code, University of Utrecht
- <u>A Guide to Reproducible Code in Ecology and Evolution, British Ecological</u> <u>Society</u>
- <u>Reproducibility and Provenance, NCEAS Learning Hub</u>
- Workflows, LTER Scientific Computing Workshops
- <u>Reproducibility Lesson, LTER Synthesis Skills for Early Career Researchers</u>
- EDS 221, Lesson 1 and Lesson 2, UCSB MEDS, By Allison Horst
- <u>GitHub Clinic, Openscapes</u>
- Building reproducible analytical pipelines with R, Bruno Rodrigues