
Intro to Tidy
Data

Fundamentals of Qualitative
and

Quantitative Data Management
2025-01-27

Artwork by @Allison_Horst

Learning Objectives

● Understand basics of relational data models, aka tidy data
● Learn how to design and create effective data tables

artwork by @allison_horst

https://twitter.com/allison_horst

Simple Guidelines for Data Management (Borer et al. 2009)

Use a scripted program

Nonproprietary file formats

Descriptive names
mooredCTD_site1_2020-2023.txt
mooredCTD_site2_2020-2023.txt
mooredCTD_site3_2020-2023.txt

Plain ASCII textA B C / 1 2 3

Header line

Keep a raw version of the data

Simple Guidelines for Data Management (Borer et al. 2009)

- Design your tables to add rows, not
columns

- Each column should contain only one type of information

- Record a single piece of data only once; separate
information collected at different scales into different
tables -- in other words, create a relational database

What is tidy data?

Tidy data is a standardized way of
organizing data tables that allows us to

manage and analyze data efficiently,
because it makes it straightforward to

understand the corresponding variable and
observation of each value

The Tidy Data Principles

1. Every column is a variable
2. Every row is an observation
3. Every cell is a single value

Tidy Data Building Blocks

Variable: Characteristic that is being
measured, counted or described with
data.

Example: Car type, salinity, year, mass.

Tidy Data Building Blocks

Tidy Data Building Blocks

Observation: a single “data point” for
which the measure, count or description
of one or more variables is recorded.

Example: If we are collecting data for
variables height, species, and location of
plants, each plant is an observation

Tidy Data Building Blocks

Tidy Data Building Blocks

Value: The record measured, count or
description of a variable.

Example: For the variable height, 3 (ft)
would be the value.

Tidy Data Building Blocks

Tidy Data Building Blocks

Entity: Each of the types of observation is
an entity.

Example: If we collect data for variables:
height, species, location, site_name for
plants and where they are seen, plant is
an entity and site is an entity.

Tidy Data Building Blocks

A dataset is a collection of values,
with each value belonging to an

observation and a variable.

Assessing Tidy Data Principles

Tidy Data

Every column is a variable

Every row is an observation

Every cell is a single values

Recognizing “untidy” data

artwork by @allison_horst

https://twitter.com/allison_horst

Recognizing “untidy” data
A not-so-tidy spreadsheet received by NCEAS….

Recognizing “untidy” data - multiple tables
Easy for humans to interpret (sort of?), hard for computer programs (e.g. R)

INSTEAD: create separate tables/files for each entity measured

Recognizing “untidy” data - inconsistent observations
Each row corresponds to more than one observation

INSTEAD: each row should represent a single observed entity

Recognizing “untidy” data - inconsistent variables
Each column contains more than one variable type

INSTEAD: all values in a column should be of the same type (tip: compare units)

Recognizing “untidy” data - marginal sums & stats
Marginal sums & statistics are combinations of observations

INSTEAD: only identifying or measured variables should exist here; use a scripted language to analyze data / calculate summary stats

Denormalized (untidy) data

Data are denormalized when observations about different entities are combined. For
example, each row in the data table below has site characteristics & species
observations:

site characteristics species observations

Importantly, a new species observation would require us to add columns (not a row) --
this data table organization is also known as wide format

Normalizing (tidying) this data table

Observed entities:

- site characteristics

- plant species

Variables associated with those observations:

- temperature

- height

To normalize this data table, we want to organize observations about each type of
entity in it’s own table

Normalized (tidy) data

We now have:

- Separate tables for each type of entity

- Each row represents a single observed entity
- Observations (rows) are all unique

- All values in a column are of the same type
- All columns pertain to the same observed entity
- Each column represents either an identifying

variable or a measured variable (no summary
stats)

Additionally:

normalized / tidy / long format

denormalized / untidy / wide format

Normalized (tidy) data

Our normalized data now meet the guidelines
set by Borer et al. 2009:

- Tables are designed to add rows, not columns

- Each column contains only one type of information
- A single piece of data is recorded only once &

separated information collected at different
scales into different tables

Normalized (tidy) data has lots of benefits!

More easily filter rows for observations of interest
dplyr::filter(data = plant_data, spcode == “DAPU”)

Describe columns more precisely

denormalized / untidy / wide format

normalized / tidy / long format

Optimize storage

Decrease errors from redundant updates

spcode is the spp. identifier, but what exactly is sp1code, sp2code?

not repeating data (e.g. date) reduces file size

e.g. only need to update site name in table 2

One more look at tidy data

artwork by @allison_horst

https://twitter.com/allison_horst

Using normalized data

Two tables?!? Don’t we want to analyze all
these different measurements together??

(e.g. how will we use site temperature as a
predictor variable for species composition?)

Keys!

Keys allow us to link observations across tables

Primary Key: a unique identifier for
each observed entity, one per row

Foreign Key: reference to a primary
key in another table (linkage)

id uniquely
identifies each row in

the plant table

site uniquely
identifies each row in

the site table

site references the primary key in the
site table -- this is our linkage

en
tit

y:
 p

la
nt

s
en

tit
y:

 s
ite

s

primary key

primary key

foreign key

surrogate
key

natural
 key

en
tit

y:
 s

ite
s

en
tit

y:
 p

la
nt

s
compound key

Keys allow us to link observations across tables

id date site spcode height name temp

1 2017-10-10 1 DAPU 4.6 Taku 23.7

2 2017-09-05 2 DAMA 3.5 Lituya 19.9

3 2017-10-10 1 DAMA 4.5 Taku 23.7

4 2017-09-05 2 DAPU 3.9 Lituya 19.9

Joined the tables by site

Merging data (aka “joins”)

Merging (or joining) two related data tables based on key values is something you’ll
probably do often during the data preparation (pre-analysis & visualization) stage.
We’ll use these two tables to showcase how different types of joins work:

Inner join

Merge (i.e. keep) the subset of rows that have matches in both the left and right tables

rows 3 (from left table) & 4 (from right table) are dropped because they have no matches

Left join

Take all rows from left table and merge on data from matching rows in right table

rows 1 & 2 (left table) have matches in the right table and are kept;
row 3 (left table) does not have a match in the right table, so it is kept and assigned an NA value

Right join

Take all rows from right table and merge on data from matching rows in left table

rows 1 & 2 (right table) have matches in the left table and are kept;
row 4 (right table) does not have a match in the left table, so it is kept and assigned an NA value

Full join

Includes all rows from both tables and adds missing values (NAs) where necessary

rows 1 & 2 are matched;
row 3 (left table) and row 4 (right table) are kept despite not having matches (assigned the value, NA)

Spoiler: {dplyr} has super helpful functions for joining data

inner_join(x, y)

left_join(x, y)

right_join(x, y)

full_join(x, y)

E-R Diagrams

● An Entity-Relationship model (E-R model), also known as an E-R

diagram, is a way to draw a compact diagram that reflects the

structure and relationships of the tables in a relational database.

E-R Diagrams

Step 1: Identify Entities

Step 2: Add Variables/Keys

Step 3: Add Relationships between Entities

Step 4: Add Cardinality

Step 4: Add Cardinality

Step 4: Add Cardinality

Activity

